亲爱的读者,很多人可能对基本不等式常见题型归纳汇总和高中数学专题题型及解题技巧不是很了解,所以今天我来和大家分享一些关于基本不等式常见题型归纳汇总和高中数学专题题型及解题技巧的知识,希望能够帮助大家更好地了解这个话题。
本文目录一览
基本不等式常见题型归纳汇总
与求值相关的数学问题和与不等式相关的数学问题是高中数学中大的两个考察方向,而基本不等式作为不等式问题的重要组成部分,贯穿高中数学中圆锥曲线、数列、函数、三角函数等多个知识点,所有掌握基本不等式的基本题型,对解决与基本不等式相关的问题显得尤为重要。现笔者对基本不等式常出现的题型予以总结,以供师生参考。
主要知识
题型一基于简单变换的基本不等式问题
思路点拨:以上8题借助常见的转换形式,往和为定值或者积为定值的方向转化即可。
此类题型以求和的取值范围转化为积为定值求解,求积的取值范围问题转化为和为定值求解为突破口,借助构造思想,构造为可以使用基本不等式的形式;常见的构造变换方法有凑项变换、拆项变换、系数变换、平方变换、常量代换、三角代换等。
变式提升
思路点拨
借助常见的转换形式,往常见基本不等式相关形式转化即可。注意基本不等式“一正二定三相等”条件的限制。
题目
思路点拨
解析
变式提升
思路点拨
分离参量,然后分子分母同除,再借助分离变换即可。
题型二基于ax+by+cxy=d类型的构造
此类题型常常以和以及积的等式形式出现,然后求和或者积的取值范围,题型切入口为将等式转化为不等式,常见的解题思路有构造法、判别式法、化法,变量代换、整体代换等。
题目
思路点拨
将等式转化为不等式,找出可以利用的不等量关系即可。
解析
题目
思路点拨
将等式转化为不等式,找出可以利用的不等量关系即可。
解析
变式提升
思路点拨
借助构造与变形转化为不等式或者单变量函数关系式,然后利用构造法、判别式法、化法,变量代换、整体代换等方法求解即可。
题目
思路点拨
把题目中等式进行变形,变量代换后整体代入运用基本不等式求解。
解析
题型三
基于复杂变换类型的构造
此类题型常常题设复杂,需要向基本不等式方向变换多次或者多次运用基本不等式,考察的角度为学生综合处理问题能力以及对不等式的熟练程度。能够掌握这类题型需要建立在掌握题型一、题型二的基础上,解题的中心思路还是往和为定值或者积为定值的方向转化。
题目
思路点拨
把题目中等式进行变形,变量代换后整体代入运用基本不等式求解。
解析
题目
思路点拨
求和的最值,转化为乘积有最值的形式,把分母b(a-b)通过转化消掉,此题即得解。
解析
变式提升
思路点拨
求和的最值,转化为乘积有定值,将a^2拆成a(a-b+b),然后利用基本不等式即可。
思路点拨
将含参项移项,然后通分,再将a-c拆成a-b+b-c此题即可得解。
题目
思路点拨
求和的最值,转化为乘积有定值的形式,把题设方程拆分重新组合即可得解。
解析
变式提升
思路点拨
题目
思路点拨
求积的最值,转化为和有定值的形式,把所求关系式往题设方程的方向转化即可得解。
解析
变式提升
思路点拨
求积的最值,转化为和有定值的形式,把所求关系式往题设方程的方向转化即可得解。解法同例9。
题目
思路点拨
当双变量存在等量关系时,可以将双变量取值范围问题转化为单变量函数性质,利用函数求最值或不等式求最值思路求解。
这类题型考察的构造思想属于深层次的,属于中上难度的题型,在碰见这类题型如果能掌握对称原理,构造思路将会破壳而出。最值原理是对称原理最基本呈现形式,对称原理应用在不等式最值问题中,就是当对称元素达到地位相同、作用一样、数值相等时,他们的对称性就达到了极致的和谐、平衡,此时问题也就达到了一种最优化的最值状态。
基本不等式问题题型众多,但都是围绕基本不等式的几个变形形式来展开,所以掌握基本不等式变形形式的本质内涵,利用构造思想、转化化归思想、函数与方程思想,这类问题将会迎刃而解,柳暗花明。
高中数学专题题型及解题技巧
数学作为一门相对抽象化的学科,是很多学生提高成绩的障碍,而习题则为学生提供了提高数学成绩的有效途径.高中数学习题是数学教学中的重要一环下面,下面是我为大家整理的关于高中数学专题题型及解题技巧,希望对您有所帮助。欢迎大家阅读参考学习!
1高中数学专题题型及解题技巧
选择题
选择题是高中数学考试中的较基础题型之一,分为多项选择和单项选择,一般是放在考查的第一部分,是考试重心,在习题练习中也占有较大比例.目前的高中数学选择题倾向于单项选择,表面看来降低了不少难度,但是选项中的相近答案极易给学生以误导.通常来说,选择题的知识覆盖面较广,思维具有跳跃性,题目由浅到深,是检测学生观察、分析以及推理判断能力的有效手段
.如何提高解答选择题正确率,这就要求学生在练习中要充分利用题干中提供的各种信息,排除相似选项的干扰,一方面从题干出发,探求结果,另一方面结合选项,排除矛盾.我们可以采取排除法,概念分析法、图形分析法和逆向思维法相结合,灵活运用各种定理概念,做到发散思维,提高解题时效率.如题:设定义在R上的函数f(x)满足f(x)?f(x+2)=13,若f(1)=2,则f(99)等于().该题共有四个答案,分别是13、2、132、213.我们可以通过这样的步骤计算:(1)(x+2)=13f(x),f(x+4)=13f(x+2)=1313f(x)=f(x).(2)函数f(x)为周期函数,且T=4,f(99)=f(4×24+3)=f(3)=13f(1)=132.在这里,我们利用题干中的相关条件,运用函数的周期性这一概念,得到f(x)是周期为4的函数.周期性是解答此题的关键,我们可以利用直接法算出.
填空题
选择题在考试中放在选择题后,题量不大,难度相对较低,但是分值也不高,主要是为了考查学生的基本技能和学生的基础能力.学生能够利用基础知识解决和分析问题,在填空题中就不会失去太多分数.填空题与选择题的差别在于:首先,填空题没有选项,在解答问题时缺乏提示,但是同时也排除了相似项的干扰;其次,填空题是在题干中抽出一部分内容由学生填补,结构简单、概念性强;
此外,填空题不要求写出运算过程,是将结论直接填入空位中的求解题.一般来说,填空题的运算量都不算大,学生可以基本采用数形结合法、等价转换法、构造法等,小题小做,提高正确率.如:在△ABC中,角A、B、C所对的边分别为a、b、c,如果a、b、c成等差数列,则cosA+cosC1+cosAcosC=.解这道题有两种方法,首先:我们可以通过取特殊值来计算,例如a=3,b=4,c=5,则cosA=45,cosC=0,cosA+cosC;1+cosAcosC=45;其次:利用角的特殊性,取特殊角A=B=C=π3,cosA=cosC=12,cosA+cosC1+cosAcosC=45.这就要求我们要熟练掌握三角形的概念以及特殊三角形直接的关系,才能在习题练习中节省时间,顺利解答.
2高中数学解题技巧
灵活数学解题技巧的运用目标
所谓灵活的数学解题技巧就是在有效的学习时间内让学生的数学学习效果达到最大化.具体目标是形成与数学课本内容紧密镶嵌的解题模式,改变学生惯有的学习方式,对待不同类型的题目要注意灵活运用.熟练地运用数学解题技巧不是一味地为了技巧而运用技巧,而是在熟练掌握基本的课本知识的同时,在逐渐的积累与实践中掌握不同类型题目的学习规律,让数学解题技巧成为学生的一种辅助工具
比如有的题目可以套用公式,但是同样也可以按照规律进行简便运算,数学解题技巧的运用旨在培养学生独立思考的逻辑思维能力和分析能力.不单单要让学生学会应对应试教育模式,还要更加注重技巧对学生解题的帮助以及运用数学思维去解决实际问题的能力.
审题技巧
审题是正确解题的关键,是对题目进行分析、综合、寻求解题思路和方法的过程,审题过程包括明确条件与目标、分析条件与目标的联系、确定解题思路与方法三部分。(1)条件的分析,一是找出题目中明确告诉的已知条件,二是发现题目的隐含条件并加以揭示。目标的分析,主要是明确要求什么或要证明什么;把复杂的目标转化为简单的目标;
把抽象目标转化为具体的目标;把不易把握的目标转化为可把握的目标。(2)分析条件与目标的联系。每个数学问题都是由若干条件与目标组成的。解题者在阅读题目的基础上,需要找一找从条件到目标缺少些什么?或从条件顺推,或从目标分析,或画出关联的草图并把条件与目标标在图上,找出它们的内在联系,以顺利实现解题的目标。(3)确定解题思路。一个题目的条件与目标之间存在着一系列必然的联系,这些联系是由条件通向目标的桥梁。用哪些联系解题,需要根据这些联系所遵循的数学原理确定。解题的实质就是分析这些联系与哪个数学原理相匹配。有些题目,这种联系十分隐蔽,必须经过认真分析才能加以揭示;有些题目的匹配关系有多种,而这正是一个问题有多种解法的原因。
3数学的解题方法
一“慢”一“快”,相得益彰
有些考生只知道考场上一味地要快,结果题意未清,条件未全,便急于解答,岂不知欲速则不达,结果是思维受阻或进入死胡同,导致失败。应该说,审题要慢,解答要快。审题是整个解题过程的“基础工程”,题目本身是“怎样解题”的信息源,必须充分搞清题意,综合所有条件,提炼全部线索,形成整体认识,为形成解题思路提供全面可靠的依据。而思路一旦形成,则可尽量快速完成。
讲求规范书写,力争既对又全
考试的又一个特点是以卷面为依据。这就要求不但会而且要对、对且全,全而规范。会而不对,令人惋惜;对而不全,得分不高;表述不规范、字迹不工整又是造成高考数学试卷非智力因素失分的一大方面。因为字迹潦草,会使阅卷老师的第一印象不良,进而使阅卷老师认为考生学习不认真、基本功不过硬、“感情分”也就相应低了,此所谓心理学上的“光环效应”。“书写要工整,卷面能得分”讲的也正是这个道理。
确保运算准确,立足一次成功
数学高考题的容量在120分钟时间内完成大小二十多个题,时间很紧张,不允许做大量细致的解后检验,所以要尽量准确运算(关键步骤,力求准确,宁慢勿快),立足一次成功。解题速度是建立在解题准确度基础上,更何况数学题的中间数据常常不但从“数量”上,而且从“性质”上影响着后继各步的解答。所以,在以快为上的前提下,要稳扎稳打,层层有据,步步准确,不能为追求速度而丢掉准确度,甚至丢掉重要的得分步骤,假如速度与准确不可兼得的说,就只好舍快求对了,因为解答不对,再快也无意义。
4高中数学具体解题技巧
数形结合法
数学是一门逻辑思维极强的学科,针对数学题目的复杂性、抽象性,绘制图形进行参照是正确解题的重要一步.这种方法一般用于函数图像、几何图形、立体几何等题目的求解中,数形结合法不仅对于解决数学大题至关重要,在选择题领域也有广泛的应用.但要注意的是,在使用数形结合法时,切勿将图形画错而影响题目的正确解答.
直接答题法
直接答题法要求我们直接从题目所给的条件出发,运用相关的概念、性质和公式等知识,在层层推理与运算的基础上,得到题目的正确答案.直接答题法一般常用于涉及概念、性质的考查或者运算相对简单选择题与填空题.例如,在进行“三角函数”的计算时,我们习惯于使用数形结合法对其函数性质进行深入的研究,那么在做题时就难免思维定式,无论多么简单的题目都进行画图求解,这无形中就浪费了很多的答题时间.当进行“三角函数”大小比较时,比如正弦函数与余弦函数的比较过程中,我们往往可以采用直接法进行一次性求解.
特殊代入法
特殊代入法指能够根据题目的具体要求,灵活代入数值,确定图形的特殊关系和位置来取代题目的正规解法,通过得出的特殊答案,对题目的选项进行一一代入筛选,从而做出正确的判断.这种方法常用于题目条件清晰的特殊函数、特殊图形、特殊极值的解答中.例如,在进行含有未知数的等差数列求和时,除了按照等差数列的性质将带有未知数的公式列出来,还可以赋予未知数一个特殊的值,这个值一般为“1”或者是“0”,通过特殊值求出特殊的结果,最后进行整个公式的代入求值.
高中数学专题题型及解题技巧相关文章:
1.高中数学常考题型答题技巧与方法及顺口溜
2.高中数学题型特点以及答题技巧
3.高中数学21种解题方法与技巧
4.高考数学常考题型答题技巧与方法有哪些
5.高中数学解答题8个答题模板与做大题的方法
6.高考数学必考题型以及题型分析
7.高考数学题型特点和答题技巧
8.高中数学六种解题技巧与五种数学答题思路
9.高中数学50个解题小技巧
10.高中数学7大学习方法,高考数学命题点及答题技巧
跪求高中数学题型归纳(湖南省)!
几种数学题型解法归纳
第一种:数列(等差数列与等比数列)
——北京十二中特级教师刘文武
清华附中特级教师张小英
数列是高中数学中的一个重要课题,也是数学竞赛中经常出现的问题。数列中最基本的是等差数列与等比数列。
所谓数列,就是按一定次序排列的一列数。如果数列{an}的第n项an与项数(下标)n之间的函数关系可以用一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式。
从函数角度看,数列可以看作是一个定义域为正整数集N*(或它的有限子集{1,2,…n})的函数当自变量从小到大依次取值时对应的一列函数值,而数列的通项公式也就是相应函数的解析式。
为了解数列竞赛题,首先要深刻理解并熟练掌握两类基本数列的定义、性质有关公式,把握它们之间的(同构)关系。
一、等差数列
如果一个数列从第二项起,每一项与它的前一项的差等于同一个常数,这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差常用字母d表示。
等差数列{an}的通项公式为:
an=a1+(n-1)d(1)
前n项和公式为:
(2)
从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0。
在等差数列{an}中,等差中项:
,
且任意两项am,an的关系为:
an=am+(n-m)d
它可以看作等差数列广义的通项公式。
从等差数列的定义、通项公式,前n项和公式还可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N*,且m+n=p+q,则有
am+an=ap+aq
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等。
二、等比数列
如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。
等比数列{an}的通项公式是:
an=a1·qn-1
前n项和公式是:
在等比数列中,等比中项:
,
且任意两项am,an的关系为an=am·qn-m
如果等比数列的公比q满足0<∣q∣<1,这个数列就叫做无穷递缩等比数列,它的各
项的和(又叫所有项的和)的公式为:
从等比数列的定义、通项公式、前n项和公式可以推出:
a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N*,则有:
ap·aq=am·an,
记πn=a1·a2…an,则有
π2n-1=(an)2n-1,π2n+1=(an+1)2n+1
另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,则{Can}是等比数列。在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的。
重要的不仅是两类基本数列的定义、性质,公式;而且蕴含于求和过程当中的数学思想方法和数学智慧,也是极其珍贵的,诸如“倒排相加”(等差数列),“错位相减”(等比数列)。
数列中主要有两大类问题,一是求数列的通项公式,二是求数列的前n项和。
三、范例
例1.设ap,aq,am,an是等比数列{an}中的第p、q、m、n项,若p+q=m+n,求证:apoaq=amoan
证明:设等比数列{an}的首项为a1,公比为q,则
ap=a1·qp-1,aq=a1·qq-1,am=a1·qm-1,an=a1·qn-1
所以:
ap·aq=a12qp+q-2,am·an=a12·qm+n-2,
故:ap·aq=am+an
说明:这个例题是等比数列的一个重要性质,它在解题中常常会用到。它说明等比数列中距离两端(首末两项)距离等远的两项的乘积等于首末两项的乘积,即:
a1+k·an-k=a1·an
对于等差数列,同样有:在等差数列{an}中,距离两端等这的两项之和等于首末两项之和。即:
a1+k+an-k=a1+an
例2.在等差数列{an}中,a4+a6+a8+a10+a12=120,则2a9-a10=
A.20B.22C.24D28
解:由a4+a12=2a8,a6+a10=2a8及已知或得
5a8=120,a8=24
而2a9-a10=2(a1+8d)-(a1+9d)=a1+7d=a8=24。
故选C
例3.已知等差数列{an}满足a1+a2+a3+…+a101=0,则有()
A.a1+a101>0B.a2+a100<0C.a3+a99=0D.a51=51
解:显然,a1+a2+a3+…+a101
故a1+a101=0,从而a2+a100=a3+a99=a1+a101=0,选C
例4.设Sn为等差数列{an}的前n项之各,S9=18,an-4=30(n>9),Sn=336,则n为()
A.16B.21C.9D8
解:由于S9=9×a5=18,故a5=2,所以a5+an-4=a1+an=2+30=32,而,故n=21选B
例5.设等差数列{an}满足3a8=5a13,且a1>0,Sn为其前n项之和,则Sn(n∈N*)中最大的是()。(1995年全国高中联赛第1题)
(A)S10(B)S11(C)S20(D)S21
解:∵3a8=5a13
∴3(a1+7d)=5(a1+12d)
故
令an≥0→n≤20;当n>20时an<0
∴S19=S20最大,选(C)
注:也可用二次函数求最值
例6.设等差数列的首项及公差均为非负整数,项数不少于3,且各项的和为972,则这样的数列共有()
(A)2个(B)3个(C)4个(D)5个
解:设等差数列首项为a,公差为d,则依题意有()
即on=2×972(*)
因为n是不小于3的自然数,97为素数,故数n的值必为2×972的约数(因数),它只能是97,2×97,972,2×972四者之一。
若d>0,则d≥1由(*)式知2×972≥n(n-1)d≥n(n-1)故只可能有n=97,(*)式化为:a+48d=97,这时(*)有两组解:
若d=0,则(*)式化为:an=972,这时(*)也有两组解。
故符今题设条件的等差数列共4个,分别为:
49,50,51,…,145,(共97项)
1,3,5,…,193,(共97项)
97,97,97,…,97,(共97项)
1,1,1,…,1(共972=9409项)
故选(C)
例7.将正奇数集合{1,3,5,…}由小到大按第n组有(2n-1)个奇数进行分组:
{1},{3,5,7},{9,11,13,15,17},…
(第一组)(第二组)(第三组)
则1991位于第组中。
解:依题意,前n组中共有奇数
1+3+5+…+(2n-1)=n2个
而1991=2×996-1,它是第996个正奇数。
∵312=961<996<1024=322
∴1991应在第31+1=32组中。
故填32
例8.一个正数,若其小数部分、整数部分和其自身成等比数列,则该数为。
解:设该数为x,则其整数部分为2
其中<1,解得:
由0<x-<1知,
∴=1,
故应填
例9.等比数列{an}的首项a1=1536,公比,用πn表示它的前n项之积,则πn(n∈N*)最大的是()
(A)π9(B)π11(C)π12(D)π13
解:等比数列{an}的通项公式为,前n项和
因为
故π12最大。
选(C)
例10.设x≠y,且两数列x,a1,a2,a3,y和b1,x,b2,b3,y,b4均为等差数列,那么=。
解:依题意,有y-x=4(a2-a1)∴;
又y-x=3(b3-b2)∴
∴
例11.设x,y,Z是实数,3x,4y,5z成等比数列,且成等差数列,则的值是。
解:因为3x,4y,5z成等比数列,所以有
3x·5z=(4y)2即16y2=15xz①
又∵成等差数列,所以有即②
将②代入①得:
∵x≠0,y≠0,z≠0
∴64xz=15(x2+2xz+z2)
∴15(x2+z2)=34xz
∴
例12.已知集合M={x,xy,lg(xy)}及N={0,∣x∣,y}
并且M=N,那么的值等于。
解:由M=N知M中应有一元素为0,任由lg(xy)有意义知xy≠0,从而x≠0,且y≠0,故只有lg(xy)=0,xy=1,M={x,1,0};若y=1,则x=1,M=N={0,1,1}与集合中元素互异性相连,故y≠1,从而∣x∣=1,x=±1;由x=1y=1(含),由x=-1y=-1,M=N={0,1,-1}
此时,
从而
注:数列x,x2,x3,…,x2001;以及
在x=y=-1的条件下都是周期为2的循环数列,S2n-1=-2,S2n=0,故2001并不可怕。
例13.已知数列{an}满足3an+1+an=4(n≥1)且a1=9,其前n项之和为Sn,则满足不等式()
∣Sn-n-6∣<的最小整数n是()
(A)5(B)6(C)7(D)8
解:
由3an+1+an=4(n≥1)
3an+1-3=1-an
故数列{an-1}是以8为首项,以为公比的等比数列,所以
当n=7时满足要求,故选(C)
:数列{an}既不是等差数列,也不是等比数列,而是由两个项数相等的等差数列:1,1,…,1和等比数列:的对应项的和构成的数列,故其前n项和Sn可转化为相应的两个已知数列的和,这里,观察通项结构,利用化归思想把未知转化为已知。
例14.设数列{an}的前n项和Sn=2an-1(n=1,2,…),数列{bn}满足b1=3,bk+1=ak+bk(k=1,2,…)求数列{bn}的前n项和。
解:由Sn=2an-1,令n=1,得S1=a1=2a1-1,∴a1=1①
又Sn=2an-1②
Sn-1=2an-1-1③
②-③得:Sn-sn-1=2an-2an-1
∴an=2an-2an-1
故
∴数列{an}是以a1=1为首项,以q=2为公比的等比数列,故an=2n-1④
由⑤
∴以上诸式相加,得
注:本题综合应用了a1-s1,a3=Sn-Sn-1(n≥2)以及等差数列、等比数列求和公式以及叠加等方法,从基本知识出发,解决了较为复杂的问题。选准突破口,发现化归途径,源于对基础知识的深刻理念及其联系的把握。
例15.n2个正数排成n行n列
a11,a12,a13,a14,…,a1n
a21,a22,a23,a24,…,a2n
a31,a32,a33,a34,…,a3n
a41,a42,a43,a44,…,a4n
an1,an2,an3,an4,…,ann。
其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等。已知
解:设第一行数列公差为d,纵行各数列公比为q,则原n行n列数表为:
故有:
②÷③得,代入①、②得④
因为表中均为正数,故q>0,∴,从而,因此,对于任意1≤k≤n,有
记S=a11+a22+a33+…+ann⑤
⑥
⑤-⑥得:
即
评注:本题中求和,实为等差数列an=n与等比数列的对应项乘积构成的新数列的前n项的和,将⑤式两边同乘以公比,再错项相减,化归为等比数列求各。这种方法本是求等比数列前n项和的基本方法,它在解决此类问题中非常有用,应予掌握。课本P137复习参考题三B组题第6题为:求和:S=1+2x+3x2+…+nxn-1;2003年北京高考理工类第(16)题:已知数列{an}是等差数列,且a1=2,a1+a2+a3=12,(I)求数列{an}的通项公式;(II)令bn=an·xn(x∈R),求数列{bn}的前n项和公式。都贯穿了“错项相减”方法的应用。
第二种:指数函数与对数函数————北京十二中刘文武指数、对数以及指数函数与对数函数,是高中代数非常重要的内容。无论在高考及数学竞赛中,都具有重要地位。熟练掌握指数对数概念及其运算性质,熟练掌握指数函数与对数函数这一对反函数的性质、图象及其相互关系,对学习好高中函数知识,意义重大。一、指数概念与对数概念:指数的概念是由乘方概念推广而来的。相同因数相乘a·a……a(n个)=an导出乘方,这里的n为正整数。从初中开始,首先将n推广为全体整数;然后把乘方、开方统一起来,推广为有理指数;最后,在实数范围内建立起指数概念。欧拉指出:“对数源出于指数”。一般地,如果a(a》0,a≠1)的b次幂等于N,就是ab=N,那么数b叫做以a为底N的对数,记作:logaN=b其中a叫做对数的底数,N叫做真数。ab=N与b=logaN是一对等价的式子,这里a是给定的不等于1的正常数。当给出b求N时,是指数运算,当给出N求b时,是对数运算。指数运算与对数运算互逆的运算。二、指数运算与对数运算的性质1.指数运算性质主要有3条:ax·ay=ax+y,(ax)y=axy,(ab)x=ax·bx(a》0,a≠1,b》0,b≠1)2.对数运算法则(性质)也有3条:(1)loga(MN)=logaM+logaN(2)logaM/N=logaM-logaN(3)logaMn=nlogaM(n∈R)(a》0,a≠1,M》0,N》0)3.指数运算与对数运算的关系:X=alogax;mlogan=nlogam4.负数和零没有对数;1的对数是零,即loga1=0;底的对数是1,即logaa=15.对数换底公式及其推论:换底公式:logaN=logbN/logba推论1:logamNn=(n/m)logaN推论2:三、指数函数与对数函数函数y=ax(a》0,且a≠1)叫做指数函数。它的基本情况是:(1)定义域为全体实数(-∞,+∞)(2)值域为正实数(0,+∞),从而函数没有最大值与最小值,有下界,y》0(3)对应关系为一一映射,从而存在反函数--对数函数。(4)单调性是:当a》1时为增函数;当00,a≠1),f(x+y)=f(x)·f(y),f(x-y)=f(x)/f(y)函数y=logax(a》0,且a≠1)叫做对数函数,它的基本情况是:(1)定义域为正实数(0,+∞)(2)值域为全体实数(-∞,+∞)(3)对应关系为一一映射,因而有反函数——指数函数。(4)单调性是:当a》1时是增函数,当00,a≠1),f(x·y)=f(x)+f(y),f(x/y)=f(x)-f(y)例1.若f(x)=(ax/(ax+√a)),求f(1/1001)+f(2/1001)+f(3/1001)+…+f(1000/1001)分析:和式中共有1000项,显然逐项相加是不可取的。需找出f(x)的结构特征,发现规律,注意到1/1001+1000/1001=2/1001+999/1001=3/1001+998/1001=…=1,而f(x)+f(1-x)=(ax/(ax+√a))+(a1-x/(a1-x+√a))=(ax/(ax+√a))+(a/(a+ax·√a))=(ax/(ax+√a))+((√a)/(ax+√a))=((ax+√a)/(ax+√a))=1规律找到了,这启示我们将和式配对结合后再相加:原式==(1+1+…+1)5000个=500说明:观察比较,发现规律f(x)+f(1-x)=1是本例突破口。(1)取a=4就是1986年的高中数学联赛填空题:设f(x)=(4x/(4x+2)),那么和式f(1/1001)+f(2/1001)+f(3/1001)+…+f(1000/1001)的值=。(2)上题中取a=9,则f(x)=(9x/(9x+3)),和式值不变也可改变和式为求f(1/n)+f(2/n)+f(3/n)+…+f((n-1)/n).(3)设f(x)=(1/(2x+√2)),利用课本中推导等差数列前n项和的方法,可求得f(-5)+f(-4)+…+f(0)+…+f(5)+f(6)的值为。这就是2003年春季上海高考数学第12题。例2.5log25等于:()(A)1/2(B)(1/5)10log25(C)10log45(D)10log52解:∵5log25=(10/2)log25=(10log25)/(2log25)=(1/5)×10log25∴选(B)说明:这里用到了对数恒等式:alogaN=N(a>0,a≠1,N>0)这是北京市1997年高中一年级数学竞赛试题。例3.计算解法1:先运用复合二次根式化简的配方法对真数作变形。解法2:利用算术根基本性质对真数作变形,有说明:乘法公式的恰当运用化难为易,化繁为简。例4.试比较(122002+1)/(122003+1)与(122003+1)/(122004+1)的大小。解:对于两个正数的大小,作商与1比较是常用的方法,记122003=a>0,则有((122002+1)/(122003+1))÷((122003+1)/(122004+1))=((a/12)+1)/(a+1)·((12a+1)/(a+1))=((a+12)(12a+1))/(12(a+1)2)=((12a2+145a+12)/(12a2+24a+12))>1故得:((122002+1)/(122003+1))>((122003+1)/(122004+1))例5.已知(a,b为实数)且f(lglog310)=5,则f(lglg3)的值是()(A)-5(B)-3(C)3(D)随a,b的取值而定解:设lglog310=t,则lglg3=lg(1/log310)=-lglog310=-t而f(t)+f(-t)=∴f(-t)=8-f(t)=8-5=3说明:由对数换底公式可推出logab·logba=(lgb/lga)·(lga/lgb)=1,即logab=(1/logba),因而lglog310与lglg3是一对相反数。设中的部分,则g(x)为奇函数,g(t)+g(-t)=0。这种整体处理的思想巧用了奇函数性质使问题得解,关键在于细致观察函数式结构特征及对数的恒等变形。
第三种:二次函数二次函数是最简单的非线性函数之一,而且有着丰富内涵。在中学数学数材中,对二次函数和二次方程,二次三项式及二次不等式以及它们的基本性质,都有深入和反复的讨论与练习。它对近代数学,乃至现代数学,影响深远,为历年来高考数学考试的一项重点考查内容,历久不衰,以它为核心内容的重点试题,也年年有所变化,不仅如此,在全国及各地的高中数学竞赛中,有关二次函数的内容也是非常重要的命题对象。因此,必须透彻熟练地掌握二次函数的基本性质。学习二次函数的关键是抓住顶点(-b/2a,(4ac-b2)/4a),顶点的由来体现了配方法(y=ax2+bx+c=a(x+b/2a)2+(4ac-b2)/4a);图象的平移归结为顶点的平移(y=ax2→y=a(x-h)2+k);函数的对称性(对称轴x=-b/2a,f(-b/2a+x)=f(-b/2a-x),x∈R),单调区间(-∞,-b/2a),(x-x1)(x-x2)根据题目所给的不同条件,灵活地选用上述四种形式求解二次函数解析式,将会得心应手。
高中数学必修四(人教版)题型总结
三角的题型一般有三种:化简,求值,证明
化简:一般是给一个函数的解析式f(x)=什么,必须要化到最简才能求最值单调性什么的
求值:一般要先化简,或者将已知、未知变形,一定要充分利用已知条件,基本就是公式倒来倒去,注意要先看角的范围
证明:从左往右证明,从右往左证明,两边往中间都可以,要尽量让左右两边相同的部分多一点
建议:能用平方的就少用开方,避免分析开放后的正负
向量的话用的最多的就是两个向量相乘的公式a*b=absin(r),r是向量夹角和向量坐标的相乘,你应该学过了吧,还有就是向量的表示
然后建议是,一些几何题中(主要是证明题)建议用基底表示,如果垂直就用坐标表示
高中数学函数题型及解题技巧
高中数学函数题型及解题技巧如下:
1、建立基础题型和基本问题解法库。知识结构和内容都理清记牢了,我们要进行实战了。和知识点一样,每个模块分出几种基本题型,和几个特殊问题的专题。
2、对一种题型,一定要看会例题或者听懂老师讲解之后,再按老师的解法做同类型的问题。不要搞创新,或者守着自己偏颇的解题方法不放弃。我不反对题海战术,但是你要把海选准,哪种题型不会再往相应的题海里钻,已经很熟练的题型就少练一些。
也就是所谓的针对性,重点要突出。并且在做的过程中要不断总结反思,否则你就算游进太平洋也不会有提高。对于一种题型没掌握,就反复练,一道不会五道,五道不会十道。不要怀疑自己智商不在线,只要运用老师给的解题方法,多次练习一定会精通。
数学函数
数学函数是一种关系,这种关系使一个集合里的每一个元素对应到另一个(可能相同的)集合里的唯一元素。函数中包括自变量和因变量,因变量随着自变量的变化而变化,且当自变量取唯一值时,因变量有且只有唯一值与其相对应。
高中数学经典题型解析
高考数学抓住这6个题,数学一定140+,下面是高中数学经典题型解析,欢迎阅读。
三角函数题
注意归一公式、诱导公式的正确性(转化成同名同角三角函数时,套用归一公式、诱导公式(奇变、偶不变;符号看象限)时,很容易因为粗心,导致错误!一着不慎,满盘皆输!)。
数列题
1.证明一个数列是等差(等比)数列时,最后下结论时要写上以谁为首项,谁为公差(公比)的等差(等比)数列;
2.最后一问证明不等式成立时,如果一端是常数,另一端是含有n的式子时,一般考虑用放缩法;如果两端都是含n的式子,一般考虑数学归纳法(用数学归纳法时,当n=k+1时,一定利用上n=k时的假设,否则不正确。利用上假设后,如何把当前的式子转化到目标式子,一般进行适当的放缩,这一点是有难度的。简洁的方法是,用当前的式子减去目标式子,看符号,得到目标式子,下结论时一定写上综上:由①②得证;
3.证明不等式时,有时构造函数,利用函数单调性很简单(所以要有构造函数的意识)。
立体几何题
1.证明线面位置关系,一般不需要去建系,更简单;
2.求异面直线所成的角、线面角、二面角、存在性问题、几何体的高、表面积、体积等问题时,最好要建系;
3.注意向量所成的角的余弦值(范围)与所求角的余弦值(范围)的关系(符号问题、钝角、锐角问题)。
概率问题
1.搞清随机试验包含的所有基本事件和所求事件包含的基本事件的个数;
2.搞清是什么概率模型,套用哪个公式;
3.记准均值、方差、标准差公式;
4.求概率时,正难则反(根据p1+p2+...+pn=1);
5.注意计数时利用列举、树图等基本方法;
6.注意放回抽样,不放回抽样;
7.注意“零散的”的知识点(茎叶图,频率分布直方图、分层抽样等)在大题中的渗透;
8.注意条件概率公式;
9.注意平均分组、不完全平均分组问题。
圆锥曲线问题
1.注意求轨迹方程时,从三种曲线(椭圆、双曲线、抛物线)着想,椭圆考得最多,方法上有直接法、定义法、交轨法、参数法、待定系数法;
2.注意直线的`设法(法1分有斜率,没斜率;法2设x=my+b(斜率不为零时),知道弦中点时,往往用点差法);注意判别式;注意韦达定理;注意弦长公式;注意自变量的取值范围等等;
3.战术上整体思路要保7分,争9分,想12分。
导数、值、不等式恒成立问题
1.先求函数的定义域,正确求出导数,特别是复合函数的导数,单调区间一般不能并,用“和”或“,”隔开(知函数求单调区间,不带等号;知单调性,求参数范围,带等号);
2.注意最后一问有应用前面结论的意识;
3.注意分论讨论的思想;
4.不等式问题有构造函数的意识;
5.恒成立问题(分离常数法、利用函数图像与根的分布法、求函数最值法);
6.整体思路上保6分,争10分,想14分。
如果您对本文的解答感到满意,请在文章结尾处点击“顶一下”以表示您的肯定。如果您对本文不满意,也请点击“踩一下”,以便我们改进该篇文章。