朋友们,很多人可能对初二数学难题和求20道初二数学难题不是很了解,所以今天我来和大家分享一些关于初二数学难题和求20道初二数学难题的知识,希望能够帮助大家更好地了解这个话题。
本文目录一览
- 1、初二(上)数学难题
- 2、求20道初二数学难题
- 3、初二数学哪些是难点,比较难学
- 4、初二数学中最难的十道题 有的进
- 5、初二数学上册难题经典的
- 6、初二数学几何难题!
- 7、求初二数学经典难题
- 8、初二数学十大难题汇总
- 9、八年级下册数学难题,越多越好急!谢谢!!
- 10、求:初二数学难题
初二(上)数学难题
没有图,仔细看叙述过程
首先,将△BCF绕C点逆时针旋转,使得B点和A点重合,令F点的新位置为G点。
由于∠A=∠B=45°(因为△ABC为等腰直角三角形AC=BC,∠ACB=90°)
所以∠GAE=90°
且 AG=BF
然后,连接G、E两点。
在△CEG和△CEF中
CF=CG,CE为公共边
且 ∠ECG=∠FCE
所以△CEG和△CEF全等
因此 EG=EF
由于△AEG为直角三角形
所以 EG^2=AG^2+AE^2
所以得到 AE^2+BF^2=EF^2
证毕//
求20道初二数学难题
1在△ABC中,∠A=50°AB=AC,AB的垂直平分线DE交AC于点D,则∠DBC的度数是_____。
2AO垂直于OB,一只猫在A处发现B处一只老鼠向洞口O逃窜,于是以和鼠相同的速度追捕这只老鼠,请画出(或讲出过程)猫能最快截住老鼠的的⒈若等腰三角形的一个外角是80°,则它的三个内角的度数分别是____.
若等腰三角形的一个外角是150°,则它的三个内角的度数分别是____.
⒉等腰三角形的两边长分别为4CM和9CM,则周长为____CM.
⒊等腰三角形的周长是20,有一边长是8,那么其他两边的长是_____.
⒋在△ABC中,AB=AC,∠A=50°,则∠B=____.
⒌等腰三角形两腰上的高所夹的锐角为70°,则等腰三角形三个内角的度数分别为________.
⒍已知等腰△ABC的周长等于24CM,且底边减去一腰长的差为3CM,那么这个三角形的底边长是_____.
⒎在三角形ABC中,若∠A=46°,∠B=67°,则△ABC是_______三角形.
⒏在∠AOB中,OP是其角平分线,且PE⊥OA于E,PF⊥OB于F,则PE与PF的关系是______.
位置C点,并简要说明
9.(1)当k为何值时,方程组2x-y=k+1 (1) 的解是x=y
(2)x+2y=2k
10.以知a=1,b=2
求1/ab+1/
11.小明房间的面积是10.8平方米,房间地地面恰由120块相同的正方形地砖铺成,每块地砖的边长是多少?
12.在等腰梯形ABCD中,BC平行AD,AB=DC,BC=2AD=4cm,BD垂直CD,CA垂直AB,垂足分别为D、A,E是边BC的中点。
(1)判断三角形ADE的形状(简述理由)。并求其周长。
(2)求AB的长
(3)AC与DE是否互相垂直平分?请说明理由。
13.某公司在A,B两地分别有同型号的机器17台和15台,现要运往甲地18台,乙地14台,从A,B两地运往甲、乙两地的费用是:
甲地(元/台) 乙地(元/台)
A地 600 500
B地 400 800
(1)如果从A地运往甲地x台,求完成以上调运所需总费用y(元)与x(台)的函数关系式
(2)若公司设计最佳调运方案,使总费用最少,那么方案需要多少费用?为什么?
14.某电脑学校进行打字速度测试:给出一定的字数,时间不限。每四人一组,进行小组比赛。其中一组情况是这样的:若单独完成这项打字任务,则甲需24小时,乙需要20小时丙需要16小时丁12小时(1)若甲乙丙丁甲乙丙丁……的次序轮流打字,每一轮中每人各打1小时,则需要多少时间完成?(2)假若你是这是个人的指导教师,能否把(1)中所说的甲乙丙丁的次序作适当调整,是完成这项打字任务至少提前半小时?(答案要求:如认为不能,须说理由,如认为能,须至少说出一种轮流的次序,冰球出相应能提前多少时间完成打字任务)
15己知:a2+2a+b2-4b+5=0,求ab的值?
16己知:a、b、c均为正有理数,且3a3+6a2b-3a2c-6abc=0求证:a=c
17己知:有理数x、y、z,满足(x2-xy+y2)2+(z+3)2=0,那么x3+y3+z3=______________。
18(a-b)n=_______(b-a)n(n是奇数)
19A.B两公司分别在生产同类型机器,12台和8台.现卖给C工厂20台,D工厂10台.已知A公司到C工厂和D工厂的运费分别为80元和100元.B公司到C工厂和D工厂分别为60元和120元.(1)设A公司卖给C工厂奇迹X台,用含X的代数式表示总运费Y元.(2)探求运费不超过2280元,共有几种方案?写出最便宜那种.(3)X取何值时,A的运费比B的运费多?
20已知点O是三角形ABC的边AC上任意一点(不与AC)重合,过点O作直线l//BC,直线l与角BCA的平分线相交与点E,与角BCA的外角平分线相交与点F
1、OE与PF是否相等?为什么?
2、当点O在何处时,四边形AECF为矩形?请说明理由。
初二数学哪些是难点,比较难学
通过对历年的中考进行综合分析发现,中考试卷中几乎50%以上的考点都会在初二的知识点中出现,而多数考试的重点难点和热点也会在初二中涉及,尤其是在数学上,得初二数学才能得中高考数学的天下.
(一)一次函数与反比例函数
初二我们接触的函数知识将贯穿初高中学习整个过程,是代数学习的重点内容,也是解决综合问题的“强力工具”,它的学习效果,直接影响到中考中中难档次题的解答.
1、采用类比的方法,积累学习函数的常规顺序,这将会使得你在函数繁杂的内容中找到方便记忆和调用知识的捷径.如一般函数的学习都会是按照以下顺序:剖析定义,表示方法,对应认识函数的图象与性质,从函数的观点再认识以前学习过的对应的方程和不等式(组),实际应用.
2、常见的考察热点难点集中在其中数形结合的这部分内容上,大家可以有意识的在老师的指导下进行题目的归纳压缩、方法优化.
其实整式、分式、二次根式的学习也是有其类似之处的,如果我们从类比的角度去学习,将得到事半功倍的效果.
(二)全等三角形
这部分内容相对比较灵活,定理逐渐增多,几何证明要求逐渐增加,很容易出现“虚假掌握”的情况(看解答都会,自己写总觉得“差不多”,实际上总达不到解题要求).是特别体现几何学习中基础知识重要性和反思小结、解题策略重要性的地方.
1、重视基本格式.很多同学一开始不习惯几何推理的写法,其实有个很好的办法,定期重复书写一些重点题目,特别需要一字不差的落实.
2、收集常见的基本图.在处理几何问题时,如果能够很快找到“眼熟”的图形,就很快可以找到解题的突破点.
3、定期反思小结.几何问题中,题目会显得比代数问题杂乱,不能仅靠做大量的题来“应对”下一道“新题”,特别是以后到了四边形,内容更加复杂,做不过来所有的题,更别提初三复习中那么多的综合几何题了.因此,我们需要在早期养成定期反思小结的习惯.
很高兴为你解答有用请采纳
初二数学中最难的十道题 有的进
1一个多边形除了一个内角之外,其余各角之和是2570度,则这个内角数是
A,120度 B130度 C90度 D105度
2,一个三位数,三位数之和是17,百位上的数字与十位上的数字和比个位数大3,如果把百位上的数字与个位上的数字对调,既新得的数比原来数小198,则原数为
A 971 B917 C718 D791
3.已知一次函数y=ax+b的图象经过(0,2)点,它与坐标轴围成一个等腰直角三角形,则a的值为()
A 正负1 B1 C-1 D 不确定
4.N边形内角和的平均值与(N+2)边形的平均值之和为255度,那么N的值为
A 6 B7 C8 D9
5.设凸边形(N大于等于4)内角出现锐角的最多个数为M,出现钝角的最少次数为D,则M+D的值为
A 3 B4 C大于4的整数 D不能确定
1.B 多边形内角和是180(N+2),N为多边形边数.算出2570附近的多边形内角的的可能值来.
2.B 此题只需确认出个位是7就可以用排除法了.
3.A 自己画画看.
4.A 此题代入法比直接用等式解简单得多.
5.B 我认为这是五题里比较难的一道了,多边形外角和为360度.所以内角最多只能有3个,因为一个内角为锐角就有一个外角为钝角,有4个锐角的话,外角和就大于360度了.而设凸边形(N大于等于4)的平均度度数大于90,所以至少有一个钝角.这是我的想法.
初二数学上册难题经典的
1.实数m=20053-2005,下列各数中不能整除m的是( )
(A)2006 (B)2005 (C)2004 (D)2003
2.a,b,c,d是互不相等的正整数,且abcd=441,那么a+b+c+d的值是( )
(A)30 (B)32 (C)34 (D)36
3.三角形三边的长都是正整数,其中最长边的长为10,这样的三角形有( )
(A)55种 (B)45种 (C)40种 (D)30种
4.已知m,n是实数,且满足m2+2n2+m- n+ =0,则-mn2的平方根是( )
(A) (B)± (C) (D)±
5.某校初一、初二年级的学生人数相同,初三年级的学生人数是初二年级学生人数的 .已知初一年级的男生人数与初二年级的女生人数相同,初三年级男生人数占三个年级男生人数的 ,那么三个年级女生人数占三个年级学生人数的( )
(A) (B) (C) (D)
6.如图1,点E、F、G、H、M、N分别在△ABC的BC、AC、AB边上,且NH∥MG∥BC,ME∥NF∥AC,GF∥EH∥AB.有黑、白两只蚂蚁,它们同时同速从F点出发,黑蚁沿路线F→N→H→E→M→G→F爬行,白蚁沿路线F→B→A→C→F爬行,那么( )
(A)黑蚁先回到F点 (B)白蚁先回到F点
(C)两只蚂蚁同时回到F点 (D)哪只蚂蚁先回到F点视各点的位置而定
7.一个凸多边形截去一个角后形成的多边形的内角和是2520°,则原多边形的边数是( )
(A)14 (B)15 (C)15或16 (D)15或16或17
8.Let a be integral part of and b be its decimal part.Let c be the integral part of and d be the decimal part..if ad-bc=m,the( )
(A)-2<m<-1 (B)-1<m<0 (C)0<m<1 (D)1<m<2
(英汉词典:integral part 整数部分;decimal part 小数部分)
9.对a,b,定义运算“*”如下:a*b= 已知3*m=36,则实数m等于( )
(A)2 (B)4 (C)±2 (D)4或±2
10.将连续自然数1,2,3,…,n(n≥3)的排列顺序打乱,重新排列成a1,a2,a3,…,an.若(a1-1)(a2-2)(a3-3)…(an-n)恰为奇数,则( )
(A)一定是偶数 (B)一定是奇数
(C)可能是奇数,也可能是偶数 (D)一定是2m-1(m是奇数)
二、A组填空题(每小题4分,共40分)
11.已知a、b都是实数,且a= ,b= ,b< <2a,那么实数x的取值范围是_________.
12.计算 -20062的结果是__________.
13.已知x=2 +1,则分式 的值等于__________.
14.一个矩形各边的长都是正整数,而且它的面积的数量等于其周长的量数的2倍,这样的矩形有__________个.
15.Suppose that in Fig.2,the length of side of square ABCD is 1,E and F are mid-points of CD and AD respectively ,GE and CF intersect at a point P.Then the length of line segment CP is __________.
(英汉词典:figure(缩写Fig.)图;length 长度;square 正方形;mid-point中点;intersect 相交;line segment 线段)
16.要使代数式 有意义,实数x的取值范围是____________.
17.图3的梯形ABCD中,F是CD的中点,AF⊥AB,E是BC边上的一点,且AE=BE.若AB=m(m为常数),则EF的长为__________.
18.A,n都是自然数,且A=n2+15n+26是一个完全平方数,则n等于__________.
19.一个长方体的长、宽、高均为整数,且体积恰好为2006cm3,现将它的表面积涂上红色后,再切割成边长为1cm的小正方体,如果三面为红色的小正方体有178个,那么恰好有两面为红色的小正方体有________个.
20.一条信息可以通过如图4所示的网络按箭头所指方向由上往下传送,例如到达点C2的信息可经过B1或B2送达,共有两条途径传送,则信息由A点传送到E1、E2、E3、E4、E5的不同途径共有________条.
三、B组填空题(每小题8分,共40分.每小题两个空,每空4分.)
21.某学校有小学六个年级,每个年级8个班;初中三个年级,每个年级8个班;高中三个年级,每个年级12个班.现要从中抽取27个班做调查研究,使得各种类型的班级抽取的比例相同,那么小学每个年级抽取________个班,初中每个年级抽取________个班.
22.矩形ABCD中,AB=2,AB≠BC,其面积为S,则沿其对称轴折叠后所得的新矩形的对角线长为__________或__________.
23.已知m,n,l都是两位正整数,且它们不全相等,它们的最小公倍数是385,则m+n+l的最大值是__________,最小值是__________.
24.某工程的施工费用不得超过190万元.该工程若由甲公司承担,需用20天,每天付费10万元;若由乙公司承担,需用30天,每天付费6万元.为缩短工期,决定由甲公司先工作m天,余下的工作由乙公司完成,那么m=________,完工共需要__________天.
25.将2006写成n(n≥3)个连续自然数的和,请你写出两个表达式:
(1)__________________________________;(2)__________________________________.
初二数学几何难题!
△ABP全等于△ABQ,这知道吧?
所以BP=DQ,因为BC=DC,所以PC=QC,所以△QPC使等腰直角三角形,设BP为Xcm,因为PC=QC=5-X,所以QP=10-5倍根号3(你是初二的,可以用勾股定理,我是用三角函数)然后因为QP=AP,所以
BP的平方+AB的平方=AP的平方,从而就可以得出X,然后代入2.3问。
求初二数学经典难题
计算类:
通过计算,探索规律:
1×2×3×4+1=25=5²
2×3×4×5+1=121=11²
3×4×5×6+1=361=19²
............
(1)用含有n的等式表示你过发现的规律:
答:n(n+1)(n+2)(n+3)+1
=n(n+3)(n+2)(n+1)+1
=(n^2+3n)(n^2+3n+2)+1
=(n^2+3n)^2+2(n^2+3n)+1
=(n^2+3n+1)^2
(2)不用计算器计算:100×101×102×103+1=?
答:100×101×102×103+1
=(100^2+3×100+1)^2
=10301^2
几何类:
如图(1)DO平分∠EDC,探究∠E,∠C,∠DOC的关系;
答:由三角形外角定理,有:∠POC=∠1+∠E,①
由三角形内角和定理,有:∠POC+∠2+∠C=180°,②
①+②得:2∠POC+∠C=180°+∠E,∴∠POC=90°+(∠E-∠C)/2。
(2)在直角坐标系中,第一象限AB方向放有一个平面镜,一束光线CD经过反射的反射光线是DE,法线DH交y轴于点H.交x轴于点F(∠DCE>∠DEC),若平面镜AB绕点D旋转,则是否存在一个正整数k,使∠DCE -∠DEC = k ∠OHF.若存在,请求出k值,若不存在,请说明理由;
答:由第一个问题的结论,有:∠PFE=90°+(∠C-∠E)/2,
由三角形外角定理,有:∠PFE=∠HOF+∠OHF=90°+∠OHF。
上述两式相减,得:(∠C-∠E)/2-∠OHF=0,得:∠C-∠E=2∠OHF。
∴存在正整数k,使∠C-∠E=k∠OHF成立,其中k=2。
(3)在(2)的条件下,在E点处水平放第二个平面镜,如图所示,光线CD经过二次反射后,反射光线为EG.射线CD、EG的反向延长线交于点P.求证:∠P = 2∠OHF。答:由第二个问题的结论,有:∠ACE-∠AEC=2∠OHF。
由三角形外角定理,有:∠ACE=∠P+∠CEP。
在FE的延长线上任取一点Q,则有:∠AEC=∠GEQ=∠CEP。
∴∠P+∠CEP-∠CEP=2∠OHF,得:∠P=2∠OHF。
应该可以吧,O(∩_∩)O~
初二数学十大难题汇总
2000
2.25
a^4/(a+b)^2+b^4*(a+b)^2+a^3*b+b^3*a
7x^2+2x+8
a=-2,b=1
40,40
4(是等腰直角三角形BPQ)
100
a=5,b=3;a=17,b=7
0
m=2-a
m^10+m^9+m^8+…+m-47=(2-a)/(a-1)*(1-(2-a)^10)-47
八年级下册数学难题,越多越好急!谢谢!!
八年级下册数学好题难题精选
分式:
一:如果abc=1,求证 + + =1
解:原式= + +
= + +
=
=1
二:已知 + = ,则 + 等于多少?
解: + =
=
2( ) =9
2 +4 +2 =9
2( )=5
=
+ =
三:一个圆柱形容器的容积为V立方米,开始用一根小水管向容器内注水,水面高度达到容器高度一半后,改用一根口径为小水管2倍的大水管注水。向容器中注满水的全过程共用时间t分。求两根水管各自注水的速度。
解:设小水管进水速度为x,则大水管进水速度为4x。
由题意得:
解之得:
经检验得: 是原方程解。
∴小口径水管速度为 ,大口径水管速度为 。
四:联系实际编拟一道关于分式方程 的应用题。要求表述完整,条件充分并写出解答过程。
解略
五:已知M= 、N= ,用“+”或“-”连结M、N,有三种不同的形式,M+N、M-N、N-M,请你任取其中一种进行计算,并简求值,其中x:y=5:2。
解:选择一: ,
当 ∶ =5∶2时, ,原式= .
选择二: ,
当 ∶ =5∶2时, ,原式= .
选择三: ,
当 ∶ =5∶2时, ,原式= .
反比例函数:
一:一张边长为16cm正方形的纸片,剪去两个面积一定且一样的小矩形得到一个“E”图案如图1所示.小矩形的长x(cm)与宽y(cm)之间的函数关系如图2所示:
(1)求y与x之间的函数关系式;
(2)“E”图案的面积是多少?
(3)如果小矩形的长是6≤x≤12cm,求小矩形宽的范围.
解:(1)设函数关系式为
∵函数图象经过(10,2) ∴ ∴k=20, ∴
(2)∵ ∴xy=20, ∴
(3)当x=6时,
当x=12时,
∴小矩形的长是6≤x≤12cm,小矩形宽的范围为
二:是一个反比例函数图象的一部分,点 , 是它的两个端点.
1
1
10
10
A
B
O
x
y
(1)求此函数的解析式,并写出自变量 的取值范围;
(2)请你举出一个能用本题的函数关系描述的生活实例.
解:(1)设 , 在图象上, ,即 ,
,其中 ;
(2)答案不唯一.例如:小明家离学校 ,每天以 的速度去上学,那么小明从家去学校所需的时间 .
三:如图,⊙A和⊙B都与x轴和y轴相切,圆心A和圆心B都在反比例函数 的图象上,则图中阴影部分的面积等于 .
答案:r=1
S=πr²=π
四:如图11,已知正比例函数和反比例函数的图像都经过点M(-2, ),且P( ,-2)为双曲线上的一点,Q为坐标平面上一动点,PA垂直于x轴,QB垂直于y轴,垂足分别是A、B.
(1)写出正比例函数和反比例函数的关系式;
(2)当点Q在直线MO上运动时,直线MO上是否存在这样的点Q,使得△OBQ与△OAP面积相等?如果存在,请求出点的坐标,如果不存在,请说明理由;
(3)如图12,当点Q在第一象限中的双曲线上运动时,作以OP、OQ为邻边的平行四边形OPCQ,求平行四边形OPCQ周长的最小值.
图11
图12
解:(1)设正比例函数解析式为 ,将点M( , )坐标代入得 ,所以正比例函数解析式为
同样可得,反比例函数解析式为
(2)当点Q在直线DO上运动时,
设点Q的坐标为 ,
于是 ,
而 ,
所以有, ,解得
所以点Q的坐标为 和
(3)因为四边形OPCQ是平行四边形,所以OP=CQ,OQ=PC,
而点P( , )是定点,所以OP的长也是定长,所以要求平行四边形OPCQ周长的最小值就只需求OQ的最小值.
因为点Q在第一象限中双曲线上,所以可设点Q的坐标为 ,
由勾股定理可得 ,
所以当 即 时, 有最小值4,
又因为OQ为正值,所以OQ与 同时取得最小值,
所以OQ有最小值2.
由勾股定理得OP= ,所以平行四边形OPCQ周长的最小值是
.
五:如图,在平面直角坐标系中,直线AB与Y轴和X轴分别交于点A、点8,与反比例函数y一罟在第一象限的图象交于点c(1,6)、点D(3,x).过点C作CE上y轴于E,过点D作DF上X轴于F.
(1)求m,n的值;
(2)求直线AB的函数解析式;
勾股定理:
一:清朝康熙皇帝是我国历史上对数学很有兴趣的帝王.近日,西安发现了他的数学专著,其中有一文《积求勾股法》,它对“三边长为3、4、5的整数倍的直角三角形,已知面积求边长”这一问题提出了解法:“若所设者为积数(面积),以积率六除之,平方开之得数,再以勾股弦各率乘之,即得勾股弦之数”.用现在的数学语言表述是:“若直角三角形的三边长分别为3、4、5的整数倍,设其面积为S,则第一步: =m;第二步: =k;第三步:分别用3、4、5乘以k,得三边长”.
(1)当面积S等于150时,请用康熙的“积求勾股法”求出这个直角三角形的三边长;
(2)你能证明“积求勾股法”的正确性吗?请写出证明过程.
解:(1)当S=150时,k= = =5,
所以三边长分别为:3×5=15,4×5=20,5×5=25;
(2)证明:三边为3、4、5的整数倍,
设为k倍,则三边为3k,4k,5k,
而三角形为直角三角形且3k、4k为直角边.
其面积S= (3k)·(4k)=6k2,
所以k2= ,k= (取正值),
即将面积除以6,然后开方,即可得到倍数.
二:一张等腰三角形纸片,底边长l5cm,底边上的高长22.5cm.现沿底边依次从下往上裁剪宽度均为3cm的矩形纸条,如图所示.已知剪得的纸条中有一张是正方形,则这张正方形纸条是( )
A.第4张 B.第5张 C.第6张 D.第7张
答案:C
三:如图,甲、乙两楼相距20米,甲楼高20米,小明站在距甲楼10米的 处目测得点 与甲、乙楼顶 刚好在同一直线上,且A与B相距 米,若小明的身高忽略不计,则乙楼的高度是 米.
20米
乙
C
B
A
甲
10米
?米
20米
答案:40米
四:恩施州自然风光无限,特别是以“雄、奇、秀、幽、险”著称于世.著名的恩施大峡谷 和世界级自然保护区星斗山 位于笔直的沪渝高速公路 同侧, 、 到直线 的距离分别为 和 ,要在沪渝高速公路旁修建一服务区 ,向 、 两景区运送游客.小民设计了两种方案,图(1)是方案一的示意图( 与直线 垂直,垂足为 ), 到 、 的距离之和 ,图(2)是方案二的示意图(点 关于直线 的对称点是 ,连接 交直线 于点 ), 到 、 的距离之和 .
(1)求 、 ,并比较它们的大小;
(2)请你说明 的值为最小;
(3)拟建的恩施到张家界高速公路 与沪渝高速公路垂直,建立如图(3)所示的直角坐标系, 到直线 的距离为 ,请你在 旁和 旁各修建一服务区 、 ,使 、 、 、 组成的四边形的周长最小.并求出这个最小值.
B
A
P
X
图(1)
Y
X
B
A
Q
P
O
图(3)
B
A
P
X
图(2)
解:⑴图10(1)中过B作BC⊥AP,垂足为C,则PC=40,又AP=10,
∴AC=30
在Rt△ABC 中,AB=50 AC=30 ∴BC=40
∴ BP=
S1=
⑵图10(2)中,过B作BC⊥AA′垂足为C,则A′C=50,
又BC=40
∴BA’=
由轴对称知:PA=PA’
∴S2=BA’=
∴ ﹥
(2)如 图10(2),在公路上任找一点M,连接MA,MB,MA’,由轴对称知MA=MA’
∴MB+MA=MB+MA’﹥A’B
∴S2=BA’为最小
(3)过A作关于X轴的对称点A’, 过B作关于Y轴的对称点B’,
连接A’B’,交X轴于点P, 交Y轴于点Q,则P,Q即为所求
过A’、 B’分别作X轴、Y轴的平行线交于点G,
A’B’=
∴所求四边形的周长为
D
C
E
B
G
A
F
五:已知:如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,DE⊥AC于点F,交BC于点G,交AB的延长线于点E,且 .
(1)求证: ;
(2)若 ,求AB的长.
解:(1)证明: 于点 ,
D
C
E
B
G
A
F
.
,
.
连接 ,
AG=AG,AB=AF,
.
.
(2)解:∵AD=DC,DF⊥AC,
.
.
,
.
.
四边形:
一:如图,△ACD、△ABE、△BCF均为直线BC同侧的等边三角形.
(1) 当AB≠AC时,证明四边形ADFE为平行四边形;
E
F
D
A
B
C
(2) 当AB = AC时,顺次连结A、D、F、E四点所构成的图形有哪几类?直接写出构成图形的类型和相应的条件.
解:(1) ∵△ABE、△BCF为等边三角形,
∴AB = BE = AE,BC = CF = FB,∠ABE = ∠CBF = 60°.
∴∠FBE = ∠CBA.
∴△FBE ≌△CBA.
∴EF = AC.
又∵△ADC为等边三角形,
∴CD = AD = AC.
∴EF = AD.
同理可得AE = DF.
∴四边形AEFD是平行四边形.
(2) 构成的图形有两类,一类是菱形,一类是线段.
当图形为菱形时,∠ BAC≠60°(或A与F不重合、△ABC不为正三角形)
当图形为线段时,∠BAC = 60°(或A与F重合、△ABC为正三角形).
二:如图,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连结DE并延长至点F,使EF=AE,连结AF、BE和CF。
(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明。
(2)判断四边形ABDF是怎样的四边形,并说明理由。
(3)若AB=6,BD=2DC,求四边形ABEF的面积。
解:(1)(选证一)
(选证二)
证明:
(选证三)
证明:
(2)四边形ABDF是平行四边形。
由(1)知, 、 、 都是等边三角形。
(3)由(2)知,)四边形ABDF是平行四边形。
三:如图,在△ABC中,∠A、∠B的平分线交于点D,DE∥AC交BC于点E,DF∥BC交AC于点F.
(1)点D是△ABC的________心;
(2)求证:四边形DECF为菱形.
解:(1) 内.
(2) 证法一:连接CD,
∵ DE∥AC,DF∥BC,
图7
∴ 四边形DECF为平行四边形,
又∵ 点D是△ABC的内心,
∴ CD平分∠ACB,即∠FCD=∠ECD,
又∠FDC=∠ECD,∴ ∠FCD=∠FDC
∴ FC=FD,
∴ □DECF为菱形.
证法二:
过D分别作DG⊥AB于G,DH⊥BC于H,DI⊥AC于I.
∵AD、BD分别平分∠CAB、∠ABC,
∴DI=DG,
DG=DH.
∴DH=DI.
∵DE∥AC,DF∥BC,
∴四边形DECF为平行四边形,
∴S□DECF=CE·DH =CF·DI,
∴CE=CF.
∴□DECF为菱形.
四:在矩形ABCD中,点E是AD边上一点,连接BE,且∠ABE=30°,BE=DE,连接BD.点P从点E出发沿射线ED运动,过点P作PQ∥BD交直线BE于点Q.
(1) 当点P在线段ED上时(如图1),求证:BE=PD+ PQ;
(2)若 BC=6,设PQ长为x,以P、Q、D三点为顶点所构成的三角形面积为y,求y与 x的函数关系式(不要求写出自变量x的取值范围);
(3)在②的条件下,当点P运动到线段ED的中点时,连接QC,过点P作PF⊥QC,垂足为F,PF交对角线BD于点G(如图2),求线段PG的长。
解:(1)证明:∵∠A=90° ∠ABE=30° ∠AEB=60°
∵EB=ED ∴∠EBD=∠EDB=30°
∵PQ∥BD ∴∠EQP=∠EBD ∠EPQ=∠EDB
∴∠EPQ=∠EQP=30° ∴EQ=EP
过点E作EM⊥OP垂足为M ∴PQ=2PM
∵∠EPM=30°∴PM= PE ∴PE= PQ
∵BE=DE=PD+PE ∴BE=PD+ PQ
(2)解:由题意知AE= BE ∴DE=BE=2AE
∵AD=BC=6 ∴AE=2 DE=BE=4
当点P在线段ED上时(如图1)
过点Q做QH⊥AD于点H QH= PQ= x
由(1)得PD=BE- PQ=4- x
∴y= PD·QH=
当点P在线段ED的延长线上时(如图2)过点Q作QH⊥DA交DA延长线于点H’ ∴QH’= x
过点E作EM’⊥PQ于点M’ 同理可得EP=EQ= PQ ∴BE= PQ-PD
∴PD= x-4 y= PD·QH’=
(3)解:连接PC交BD于点N(如图3)∵点P是线段ED中点
∴EP=PD=2 ∴PQ= ∵DC=AB=AE·tan60°=
∴PC= =4 ∴cos∠DPC= = ∴∠DPC=60°
∴∠QPC=180°-∠EPQ-∠DPC=90°
∵PQ∥BD ∴∠PND=∠QPC=90° ∴PN= PD=1
QC= = ∵∠PGN=90°-∠FPC ∠PCF=90°-∠FPC
∴∠PCN=∠PCF……………1分 ∵∠PNG=∠QPC=90° ∴△PNG~△QPC
∴ ∴PG= =
五:如图,这是一张等腰梯形纸片,它的上底长为2,下底长为4,腰长为2,这样的纸片共有5张.打算用其中的几张来拼成较大的等腰梯形,那么你能拼出哪几种不同的等腰梯形?分别画出它们的示意图,并写出它们的周长.
解:如图所示
六:已知:如图,在矩形ABCD中,E、F分别是边BC、AB上的点,且EF=ED,EF⊥ED.求证:AE平分∠BAD.
证明:∵四边形ABCD是矩形
∴∠B=∠C=∠BAD=90° AB=CD
∴∠BEF+∠BFE=90°
∵EF⊥ED∴∠BEF+∠CED=90°
∴∠BEF=∠CED∴∠BEF=∠CDE
又∵EF=ED∴△EBF≌△CDE
∴BE=CD
∴BE=AB∴∠BAE=∠BEA=45°
∴∠EAD=45°
∴∠BAE=∠EAD
∴AE平分∠BAD
七:如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边AD的E点上,BG=10.
(1)当折痕的另一端F在AB边上时,如图(1).求△EFG的面积.
(2)当折痕的另一端F在AD边上时,如图(2).证明四边形BGEF为菱形,并求出折痕GF的长.
图(1)
图(2)
解:(1)过点G作GH⊥AD,则四边形ABGH为矩形,∴GH=AB=8,AH=BG=10,由图形的折叠可知△BFG≌△EFG,∴EG=BG=10,∠FEG=∠B=90°;∴EH=6,AE=4,∠AEF+∠HEG=90°,∵∠AEF+∠AFE=90°,∴∠HEG=∠AFE,又∵∠EHG=∠A=90°,∴△EAF∽△EHG,∴ ,∴EF=5,∴S△EFG= EF·EG= ×5×10=25.
(2)由图形的折叠可知四边形ABGF≌四边形HEGF,∴BG=EG,AB=EH,
∠BGF=∠EGF,∵EF∥BG,∴∠BGF=∠EFG,∴∠EGF =∠EFG,∴EF=EG,
∴BG=EF,∴四边形BGEF为平行四边形,又∵EF=EG,∴平行四边形BGEF为菱形;
连结BE,BE、FG互相垂直平分,在Rt△EFH中,EF=BG=10,EH=AB=8,由勾股定理可得FH=AF=6,∴AE=16,∴BE= =8 ,∴BO=4 ,∴FG=2OG=2 =4 。
八:(1)请用两种不同的方法,用尺规在所给的两个矩形中各作一个
不为正方形的菱形,且菱形的四个顶点都在矩形的边上.(保留作图痕迹)
(2)写出你的作法.
解:(1)所作菱形如图①、②所示.
说明:作法相同的图形视为同一种.例如类似图③、图④的图形视为与图②是同一种.
(2)图①的作法:
作矩形A1B1C1D1四条边的中点E1、F1、G1、H1;
连接H1E1、E1F1、G1F1、G1H1.
四边形E1F1G1H1即为菱形.
图②的作法:
在B2C2上取一点E2,使E2C2>A2E2且E2不与B2重合;
以A2为圆心,A2E2为半径画弧,交A2D2于H2;
以E2为圆心,A2E2为半径画弧,交B2C2于F2;
连接H2F2,则四边形A2E2F2H2为菱形.
A
B
C
P
D
E
九:如图,P是边长为1的正方形ABCD对角线AC上一动点(P与A、C不重合),点E在射线BC上,且PE=PB.
(1)求证:① PE=PD ; ② PE⊥PD;
(2)设AP=x, △PBE的面积为y.
① 求出y关于x的函数关系式,并写出x的取值范围;
② 当x取何值时,y取得最大值,并求出这个最大值.
解:(1)证法一:
① ∵ 四边形ABCD是正方形,AC为对角线,
∴ BC=DC, ∠BCP=∠DCP=45°.
∵ PC=PC,
∴ △PBC≌△PDC (SAS).
∴ PB= PD, ∠PBC=∠PDC.
又∵ PB= PE ,
∴ PE=PD.
A
B
C
D
P
E
1
2
H
② (i)当点E在线段BC上(E与B、C不重合)时,
∵ PB=PE,
∴ ∠PBE=∠PEB,
∴ ∠PEB=∠PDC,
∴ ∠PEB+∠PEC=∠PDC+∠PEC=180°,
∴ ∠DPE=360°-(∠BCD+∠PDC+∠PEC)=90°,
∴ PE⊥PD. )
(ii)当点E与点C重合时,点P恰好在AC中点处,此时,PE⊥PD.
(iii)当点E在BC的延长线上时,如图.
∵ ∠PEC=∠PDC,∠1=∠2,
∴ ∠DPE=∠DCE=90°,
∴ PE⊥PD.
综合(i)(ii)(iii), PE⊥PD.
A
B
C
P
D
E
F
(2)① 过点P作PF⊥BC,垂足为F,则BF=FE.
∵ AP=x,AC= ,
∴ PC= - x,PF=FC= .
BF=FE=1-FC=1-( )= .
∴ S△PBE=BF·PF= ( ) .
即 (0<x< ).
② .
∵ <0,
∴ 当 时,y最大值 .
(1)证法二: A
B
C
P
D
E
F
G
1
2
3
① 过点P作GF∥AB,分别交AD、BC于G、F. 如图所示.
∵ 四边形ABCD是正方形,
∴ 四边形ABFG和四边形GFCD都是矩形,
△AGP和△PFC都是等腰直角三角形.
∴ GD=FC=FP,GP=AG=BF,∠PGD=∠PFE=90°.
又∵ PB=PE,
∴ BF=FE,
∴ GP=FE,
∴ △EFP≌△PGD (SAS).
∴ PE=PD.
② ∴ ∠1=∠2.
∴ ∠1+∠3=∠2+∠3=90°.
∴ ∠DPE=90°.
∴ PE⊥PD.
(2)①∵ AP=x,
∴ BF=PG= ,PF=1- .
∴ S△PBE=BF·PF= ( ) .
即 (0<x< ).
② .
∵ <0,
∴ 当 时,y最大值 .
十:如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连结BG,DE.我们探究下列图中线段BG、线段DE的长度关系及所在直线的位置关系:
(1)①猜想如图1中线段BG、线段DE的长度关系及所在直线的位置关系;
②将图1中的正方形CEFG绕着点C按顺时针(或逆时针)方向旋转任意角度 ,得到如图2、如图3情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并选取图2证明你的判断.
(2)将原题中正方形改为矩形(如图4—6),且AB=a,BC=b,CE=ka, CG=kb (a b,k 0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图5为例简要说明理由.
(3)在第(2)题图5中,连结 、 ,且a=3,b=2,k= ,求 的值.
解: (1)①
② 仍然成立
在图(2)中证明如下
∵四边形 、四边形 都是正方形
∴ , ,
∴
∴ (SAS)
∴
又∵
∴ ∴
∴
(2) 成立, 不成立
简要说明如下
∵四边形 、四边形 都是矩形,
且 , , , ( , )
∴ ,
∴
∴
∴
又∵
∴ ∴
∴
(3)∵ ∴
又∵ , ,
∴ ∴
数据的分析:
一:4.为了帮助贫困失学儿童,某团市委发起“爱心储蓄”活动,鼓励学生将自己的压岁钱和零花钱存入银行,定期一年,到期后可取回本金,而把利息捐给贫困失学儿童.某中学共有学生1200人,图1是该校各年级学生人数比例分布的扇形统计图,图2是该校学生人均存款情况的条形统计图.
(1)九年级学生人均存款元;
(2)该校学生人均存款多少元?
(3)已知银行一年期定期存款的年利率是2.25%
(“爱心储蓄”免收利息税),且每351元能提供 给一位失学儿童一学年的基本费用,那么该校一学年能帮助多少为贫困失学儿童。
解:(1)240
(2) 解法一:
七年级存款总额:400×1200×40% = 192000(元)
八年级存款总额:300×1200×35% = 126000 (元)
九年级存款总额: 240×1200×25% = 72000 (元)
(192000+126000+72000)÷ 1200 = 325 (元)
所以该校的学生人均存款额为 325 元
解法二: 400×40% + 300×35% + 240×25% = 325 元
所以该校的学生人均存款额为 325 元
(3)解法一: (192000+126000+72000)×2.25% ÷351= 25(人)
解法二: 325×1200×2.25%÷351 = 25(人)。
二:如图是连续十周测试甲、乙两名运动员体能训练情况的折线统计图。教练组规定:体能测试成绩70分以上(包括70分)为合格。
⑴请根据图11中所提供的信息填写右表:
⑵请从下面两个不同的角度对运动员体能测试结果进行判断:
①依据平均数与成绩合格的次数比较甲和乙, 的体能测试成绩较好;
平均数
中位数
体能测试成绩合格次数
甲
65
乙
60
②依据平均数与中位数比较甲和乙, 的体能测试成绩较好。
⑶依据折线统计图和成绩合格的次数,分析哪位运动员体能训练的效果较好。
解:(1)如表所示:
平均数
中位数
体能测试成绩合格次数
甲
60
65
2
乙
60
57.5
4
⑵ ①乙;②甲
⑶ 从折线图上看,两名运动员体能测试成绩都呈上升趋势,但是,乙的增长速度比甲快,并且后一阶段乙的成绩合格次数比甲多,所以乙训练的效果较好。
三:如图所示,A、B两个旅游点从2002年至2006年“五、一”的旅游人数变化情况分别用实线和虚线表示.根据图中所示解答以下问题:
(1)B旅游点的旅游人数相对上一年,增长最快的是哪一年?
(2)求A、B两个旅游点从2002到2006年旅游人数的平均数和方差,并从平均数和方差的角度,用一句话对这两个旅游点的情况进行评价;
2002 2003 2004 2005 2006 年
6
5
4
3
2
1
万人
A
B
(3)A旅游点现在的门票价格为每人80元,为保护旅游点环境和游客的安全,A旅游点的最佳接待人数为4万人,为控制游客数量,A旅游点决定提高门票价格.已知门票价格x(元)与游客人数y(万人)满足函数关系 .若要使A旅游点的游客人数不超过4万人,则门票价格至少应提高多少?
解:(1)B旅游点的旅游人数相对上一年增长最快的是2005年.
(2) = =3(万元)
= =3(万元) = =2
= =
从2002至2006年,A、B两个旅游点平均每年的旅游人数均为3万人,但A旅游点较B旅游点的旅游人数波动大.
(3)由题意,得 5- ≤4 解得x≥100 100-80=20
答:A旅游点的门票至少要提高20元。
求:初二数学难题
在三角形ABC中,AB=AC,P为BC上任意一点,请用学过的知识说明:AB^2—AP^2=PB*PC
过点A作BC的垂线,垂足为D
根据等腰三角形的性质可得:
BD=CD
在直角三角形ABD中,根据勾股定理有
AB^2=BD^2+AD^2
在直角三角形APD中,根据勾股定理有
AP^2=AD^2+PD^2
AB^2-AP^2=BD^2-PD^2=(BD+PD)(BD-PD)
=(CD+PD)(BD-PD)=CP*BP
∴AB^2—AP^2=PB*PC
A.B两个村子在河CD的同侧,A.B两村到河边的距离分别为AC=1千米,BD=3千米,且知CD=3千米,现在要在河边CD上建一自来水厂,向A.B两村输送自来水,铺设水管工程费用为每千米2万元,请你在CD上选择自来水厂位置M,是铺设水管的费用最节省,并求出总费用是多少
延长BD至B’,使BD=B’D,连AB’,交CD于O,O便是铺设水管的费用最省的水厂位置
作AE⊥BD于E
则AE=CD=3
EB’=ED+DB’=AC+DB’=1+3=4
AB’=√(3^2+4^2)=5
AO+BO=AO+OB’=AB=5
铺设水管的总费用F=5*20000=100000元
一张矩形纸片ABCD,长AD=9,宽AB=3,将其折叠,使点D与点B重合求BE和折痕EF的长
因为D与B要重合,所以连接BD,取BD中点O,作EO垂直于BD就是折痕
BD=更号90=3倍更号10
所以BO=3/2倍更号10
因为三角形BOE相似于三角形DAB
所以BE=1/3倍更号10*3/2倍更号10=5
OE=1/3*Be=5/3
所以EF=2OE=10/3
如果您对本文的内容感到满意,请在文章结尾处点击“顶一下”以表示您的认可。如果您对本文不满意,也请点击“踩一下”,以便我们改进该篇文章。