下面就是我们帮你搜集整理的有关“概率”的名词解释是什么和概率是什么意思的问答

本文目录一览

“概率”的名词解释是什么

  • 概率:设E是随机试验·S是它的样本空间.对于E的每一事件A赋予一个实数,记为P(A),称为事件A的概率。

  • 如果集合函数P(·)满足下列条件:

非负性:对于每一个事件A,有P(A)≥0;

规范性:对于必然事件S.有P(S)=1 ;

可列可加性:对于n个互不相容且相互独立的非空事件,这些事件和事件的概率等于各自概率之和。

则我们就有理由用概率P(A)表征事件A在一次试验中发生的可能性大小。

  • 相关知识

    频数 频率 频率稳定性

参考资料

盛骤 谢式千 潘承毅.概率论与数理统计.北京:高等教育出版社,2008年6月第四版

返回目录

概率是什么意思

概率,又称或然率、机会率、机率(几率)或可能性,是概率论的基本概念。概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。越接近1,该事件更可能发生;越接近0,则该事件更不可能发生。人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。

返回目录

概率的意思 怎么理解概率的意思

1、概率,又称或然率、机会率、机率(几率)或可能性,它是概率论的基本概念。 2、概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。越接近1,该事件更可能发生。 3、越接近0,则该事件更不可能发生,其是客观论证,而非主观验证。如某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这些都是概率的实例。

返回目录

概率什么意思

【概率的定义】 随机事件出现的可能性的量度。概率论最基本的概念之一。人们常说某人有百分之多少的把握能通过这次考试,某件事发生的可能性是多少,这都是概率的实例。 ■概率的频率定义 随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。R.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。A.H.柯尔莫哥洛夫于1933年给出了概率的公理化定义。 ■概率的严格定义 设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(·)是一个集合函数,P(·)要满足下列条件:(1)非负性:对于每一个事件A,有P(A)≥0;(2)规范性:对于必然事件S,有P(S)=1;(3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+……

返回目录

概率 什么意思

概率 生词本基本释义 详细释义1.表示某件事发生的可能性大小的一个量。很自然地把必然发生的事件的概率定为1,把不可能发生的事件的概率定为0,而一般随机事件的概率是介于0与1之间的一个数。2.根据累积统计得出的可能性。

返回目录

概率的意思是什么

概率,又称或然率、机率或可能性,它是概率论的基本概念。概率是对随机事件发生的可能性的度量,一般以一个在0到1之间的实数表示一个事件发生的可能性大小。

来源

概率(Probability)一词来源于拉丁语“probabilitas”,又可以解释为 probity.Probity的意思是“正直、诚实”,在欧洲probity用来表示法庭案例中证人证词的权威性,且通常与证人的声誉相关。总之与现代意义上的概率“可能性”含义不同。

古典定义

如果一个试验满足两条:

(1)试验只有有限个基本结果;

(2)试验的每个基本结果出现的可能性是一样的。

这样的试验便是古典试验。

对于古典试验中的事件A,它的概率定义为:P(A)= ,其中n表示该试验中所有可能出现的基本结果的总数目。m表示事件A包含的试验基本结果数。这种定义概率的方法称为概率的古典定义。 

频率定义

随着人们遇到问题的复杂程度的增加,等可能性逐渐暴露出它的弱点,特别是对于同一事件,可以从不同的等可能性角度算出不同的概率,从而产生了种种悖论。另一方面,随着经验的积累,人们逐渐认识到,在做大量重复试验时,随着试验次数的增加,一个事件出现的频率,总在一个固定数的附近摆动,显示一定的稳定性。R.von米泽斯把这个固定数定义为该事件的概率,这就是概率的频率定义。从理论上讲,概率的频率定义是不够严谨的。

统计定义

在一定条件下,重复做n次试验,nA为n次试验中事件A发生的次数,如果随着n逐渐增大,频率nA/n逐渐稳定在某一数值p附近,则数值p称为事件A在该条件下发生的概率,记做P(A)=p。这个定义成为概率的统计定义。

在历史上,第一个对“当试验次数n逐渐增大,频率nA稳定在其概率p上”这一论断给以严格的意义和数学证明的是雅各布·伯努利(Jacob Bernoulli) 。

从概率的统计定义可以看到,数值p就是在该条件下刻画事件A发生可能性大小的一个数量指标。

由于频率

总是介于0和1之间,从概率的统计定义可知,对任意事件A,皆有0≤P(A)≤1,P(Ω)=1,P(Φ)=0。其中Ω、Φ分别表示必然事件(在一定条件下必然发生的事件)和不可能事件(在一定条件下必然不发生的事件)。

公理化定义

柯尔莫哥洛夫于1933年给出了概率的公理化定义,如下:

设E是随机试验,S是它的样本空间。对于E的每一事件A赋于一个实数,记为P(A),称为事件A的概率。这里P(A)是一个集合函数,P(A)要满足下列条件:

(1)非负性:对于每一个事件A,有P(A)≥0;

(2)规范性:对于必然事件Ω,有P(Ω)=1;

(3)可列可加性:设A1,A2……是两两互不相容的事件,即对于i≠j,Ai∩Aj=φ,(i,j=1,2……),则有P(A1∪A2∪……)=P(A1)+P(A2)+……

性质:

概率具有以下7个不同的性质:

性质1:P(Φ)=0;

性质2:(有限可加性)当n个事件A1,…,An两两互不相容时: P(A1∪...∪An)=P(A1)+...+P(An);

性质3:对于任意一个事件A:P(A)=1-P(非A);

性质4:当事件A,B满足A包含于B时:P(B-A)=P(B)-P(A),P(A)≤P(B);

性质5:对于任意一个事件A,P(A)≤1;

性质6:对任意两个事件A和B,P(B-A)=P(B)-P(AB);

性质7:(加法公式)对任意两个事件A和B,P(A∪B)=P(A)+P(B)-P(A∩B)。

返回目录

概率的定义

概率也叫“或然率”,是一个反映随机事件出现的可能性大小的数(因为他的形式多样。可能是百分数分数小数。)。其中随机事件是指在相同条件下,可能出现也可能不出现的事件。

返回目录

总结:以上问题和解答均搜集整理自互联网,内容仅供参考,希望对你有所帮助。