朋友们,很多人可能对初一上册一共有多少本课本分别是什么和初一上册数学课本内容汇总不是很了解,所以今天我来和大家分享一些关于初一上册一共有多少本课本分别是什么和初一上册数学课本内容汇总的知识,希望能够帮助大家更好地了解这个话题。

本文目录一览

初一上册一共有多少本课本分别是什么

初一上册一共有7本课本,分别是语文、数学、英语、生物、历史、政治、地理。

有些地区语文、数学、英语、政治、物理除了课本还有练习册和单元测试卷。历史、地里、化学除了课本之外还有填图册和地图册。生物初课本之外,还有探究报告。这样一共大概要发20多本。

扩展资料:

初一的书籍有很多义务教育版,而且还要看是哪个地区的。还有许多的地方课程,也就是特别的个省规定要上的课。语文书、数学、英语、物理、政治、中国历史、生物这是义务教育所规定的。

每个学校的版本不一样,有的用人教版教科版,有的用鲁教版等。

初一数学上册课本数学内容

返回目录

初一上册数学课本内容汇总

初一数学是初中数学的基础,这篇文章我给大家整理了初一上册数学课本的重要知识点,方便同学们参考学习。

1.角:角是由两条有公共端点的射线组成的几何对象。

2.角的度量单位:度、分、秒

3.顶点:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点

4.角的比较:

(1)角可以看成是由一条射线绕着他的端点旋转而成的。

(2)平角和周角:一条射线绕着他的端点旋转,当始边和终边成一条直线时,所成的角叫平角。当它又和始边重合的时候,所成的角角周角。平角等于108度,周角等于360度,直角等于90度。

(3)平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

5.余角和补角:

(1)余角:如果两个角的和是90度,那么称这两个角“互为余角”,简称“互余”。

性质:等角的余角相等。

(2)补角:如果两个角的和是180度,那么称这两个角“互为补角”,简称“互补”。

性质:等角的补角相等。

代数

1.代数式:用运算符号“+-×÷……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)

2.列代数式的几个注意事项:

(1)数与字母相乘,或字母与字母相乘通常使用“·”乘,或省略不写;

(2)数与数相乘,仍应使用“×”乘,不用“·”乘,也不能省略乘号;

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×应写成a;

(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;

(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做a-b和b-a。

不等式与不等式组

(1)不等式

用不等号(《,》,≥,≤,≠)连接的式子叫做不等式。

(2)不等式的性质

①对称性;

②传递性;

③加法单调性,即同向不等式可加性;

④乘法单调性;

⑤同向正值不等式可乘性;

⑥正值不等式可乘方;

⑦正值不等式可开方;

(3)一元一次不等式

用不等号连接的,含有一个未知数,并且未知数的次数都是1,未知数的系数不为0,左右两边为整式的式子叫做一元一次不等式。

(4)一元一次不等式组

一元一次不等式组是由几个含有同一个未知数的一元一次不等式组成的不等式组。

返回目录

七年级上册数学书重点内容总结

初一数学是初中数学的基础,这篇文章我给大家总结归纳了初一上册数学课本的重要知识点,供同学们参考。

整式的加减

1.单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式。

2.单项式的系数与次数:单项式中的数字因数,称单项式的系数;单项式中所有字母指数的和,叫单项式的次数。

3.多项式:几个单项式的和叫多项式。

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数。

5.整式:①单项式②多项式。

6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。

7.合并同类项法则:系数相加,字母与字母的指数不变。

8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。

9.整式的加减:

一找:(划线);

二“+”:(务必用+号开始合并);

三合:(合并)。

10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列)。

一次函数

(一)一次函数是函数中的一种,一般形如y=kx+b(k,b是常数,k≠0),其中x是自变量,y是因变量。特别地,当b=0时,y=kx+b(k为常数,k≠0),y叫做x的正比例函数。

(二)函数三要素

1.定义域:设x、y是两个变量,变量x的变化范围为D,如果对于每一个数x∈D,变量y遵照一定的法则总有确定的数值与之对应,则称y是x的函数,记作y=f(x),x∈D,x称为自变量,y称为因变量,数集D称为这个函数的定义域。

2.在函数经典定义中,因变量改变而改变的取值范围叫做这个函数的值域,在函数现代定义中是指定义域中所有元素在某个对应法则下对应的所有的象所组成的集合。如:f(x)=x,那么f(x)的取值范围就是函数f(x)的值域。

3.对应法则:一般地说,在函数记号y=f(x)中,“f”即表示对应法则,等式y=f(x)表明,对于定义域中的任意的x值,在对应法则“f”的作用下,即可得到值域中唯一y值。

(三)一次函数的表示方法

1.解析式法:用含自变量x的式子表示函数的方法叫做解析式法。

2.列表法:把一系列x的值对应的函数值y列成一个表来表示的函数关系的方法叫做列表法。

3.图像法:用图象来表示函数关系的方法叫做图象法。

(四)一次函数的性质

1.y的变化值与对应的x的变化值成正比例,比值为k。即:y=kx+b(k≠0)(k不等于0,且k,b为常数)。

2.当x=0时,b为函数在y轴上的交点,坐标为(0,b)。当y=0时,该函数图象在x轴上的交点坐标为(-b/k,0)。

3.k为一次函数y=kx+b的斜率,k=tanθ(角θ为一次函数图象与x轴正方向夹角,θ≠90°)。

4.当b=0时(即y=kx),一次函数图象变为正比例函数,正比例函数是特殊的一次函数。

5.函数图象性质:当k相同,且b不相等,图像平行;当k不同,且b相等,图象相交于Y轴;当k互为负倒数时,两直线垂直。

6.平移时:上加下减在末尾,左加右减在中间。

角的知识点

1.角:角是由两条有公共端点的射线组成的几何对象。

2.角的度量单位:度、分、秒

3.顶点:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点

4.角的比较:

(1)角可以看成是由一条射线绕着他的端点旋转而成的。

(2)平角和周角:一条射线绕着他的端点旋转,当始边和终边成一条直线时,所成的角叫平角。当它又和始边重合的时候,所成的角角周角。平角等于108度,周角等于360度,直角等于90度。

(3)平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

5.余角和补角:

(1)余角:如果两个角的和是90度,那么称这两个角“互为余角”,简称“互余”。

性质:等角的余角相等。

(2)补角:如果两个角的和是180度,那么称这两个角“互为补角”,简称“互补”。

性质:等角的补角相等。

一元一次方程

(1)定义:

一元一次方程指只含有一个未知数、未知数的最高次数为1且两边都为整式的等式,叫做一元一次方程。求出方程中未知数的值叫做方程式的解。

(2)解一元一次方程的步骤

①去分母:把系数化成整数。

②去括号

③移项:把等式一边的某项变号后移到另一边。

④合并同类项

⑤系数化为1.

平行线

1.在同一平面内,两条直线没有交点,则这两条直线互相平行,记作:a∥b。

2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行。

3.如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

4.判定两条直线平行的方法:

(1)两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。简单说成:同位角相等,两直线平行。

(2)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。简单说成:内错角相等,两直线平行。

(3)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。简单说成:同旁内角互补,两直线平行。

5.平行线的性质

(1)两条平行线被第三条直线所截,同位角相等。简单说成:两直线平行,同位角相等。

(2)两条平行线被第三条直线所截,内错角相等。简单说成:两直线平行,内错角相等。

(3)两条平行线被第三条直线所截,同旁内角互补。简单说成:两直线平行,同旁内角互补。

返回目录

初一上册数学课本内容有哪些

初一数学是整个初中数学的基础,学生们一定要掌握扎实,我整理了一些重要的知识点。

整式的加减

1、单项式:表示数字或字母乘积的式子,单独的一个数字或字母也叫单项式;

2、单项式的系数与次数:单项式中的数字因数,称单项式的系数;

单项式中所有字母指数的和,叫单项式的次数;

3、多项式:几个单项式的和叫多项式;

4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;

5、同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。

分数的加减法

1、通分与约分虽都是针对分式而言,但却是两种相反的变形。约分是针对一个分式而言,而通分是针对多个分式而言;约分是把分式化简,而通分是把分式化繁,从而把各分式的分母统一。

2、通分和约分都是依据分式的基本性质进行变形,其共同点是保持分式的值不变。

3、一般地,通分结果中,分母不展开而写成连乘积的形式,分子则乘出来写成多项式,为进一步运算作准备。

4、通分的依据:分式的基本性质。

5、通分的关键:确定几个分式的公分母。

通常取各分母的所有因式的最高次幂的积作公分母,这样的公分母叫做最简公分母。

6、类比分数的通分得到分式的通分

把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。

周长公式

常见的有以下几类:

1、长方形周长=(长+宽)×2,C=2(a+b)

2、正方形周长=边长×4,C=4a

3、圆周长=直径×圆周率,C=2π

面积公式

常见的有以下几类:

1、长方形面积=长×宽,S=ab

2、正方形面积=边长×边长,S=a²

3、三角形面积=底×高÷2,S=ah/2

4、平行四边形面积=底×高,S=ah

5、梯形面积=(上底+下底)×高÷2,S=1/2(a+b)h

6、圆形面积=半径×半径×圆周率,S=πr

7、扇形面积=半径×半径×圆周率×圆心角度数(n)÷360,S=nπr²/360

以上是我整理的数学知识点,希望能帮到你。

返回目录

初一数学上册课本内容有哪些

对于即将步入初中的学生来说,提前学习有一定的好处,我整理了数学上册的一些重点知识点。

有理数

1、像5,1,2…这样的数叫做正数,它们都比0大,为了突出数的符号,可以在正数前面加“+”号,如+5,+1.2。

2、在正数前面加上“—”号的数叫做负数,如-10,-3,…。

3、0既不是正数也不是负数。

4、整数和分数统称为有理数。

数轴

1、数轴:规定了原点、正方向和单位长度的直线。

2、数轴的三要素:原点、正方向、单位长度。

3、所有的有理数都可以用数轴上的点表示。

4、相反数:如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。

整式的加减

1、单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式。

2、单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数。

3、多项式:几个单项式的和叫多项式。

4、多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;

5、整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式。

四、整式分类为:

6、同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项。

7、合并同类项法则:系数相加,字母与字母的指数不变。

8、去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号。

9、整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并。

10、多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列。

一元一次方程

1、等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!

2、等式的性质:

等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式。

3、方程:含未知数的等式,叫方程。

4、方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!

5、移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1。

6、一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程。

7、一元一次方程的标准形式:ax+b=0(x是未知数,a、b是已知数,且a≠0)。

以上是我整理的初一上册课本内容,希望能帮到你。

返回目录

初一数学上册课本内容目录

这篇文章给大家分享初一数学上册课本内容目录及部分知识点,仅供参考!

初一数学上册课本目录

初一数学上册部分知识点

(1)几何图形

将从实物中抽象出的各种图形统称为几何图形。几何图形分为立体图形和平面图形。

(2)立体图形

立体图形是各部分不在同一平面内的几何图形,由一个或多个面围成的可以存在于现实生活中的三维图形。点动成线,线动成面,面动成体。

分类:柱体、锥体、旋转体、截面体等。

(3)平面图形

平面图形是几何图形的一种,指所有点都在同一平面内的图形,如直线、三角形、平形四边形等都是基本的平面图形。

分类:圆形、多边形、弓形、多弧形。

(4)点、线、面、体

点:点是最简单的形,是几何图形最基本的组成部分。点是空间中只有位置,没有大小的图形。

线:线是由无数个点集合成的图形。

面:在空间中,到两点距离相同的点的轨迹。

体:多面体是指四个或四个以上多边形所围成的立体。

(5)直线、射线、线段

直线:直线由无数个点构成。没有端点,向两端无限延长,长度无法度量。直线是轴对称图形。

射线:是指由线段的一端无限延长所形成的直的线,射线有且仅有一个端点,无法测量长度。

线段:是指直线上两点间的有限部分(包括两个端点),有别于直线、射线。

(6)角:在几何学中,角是由两条有公共端点的射线组成的几何对象。这两条射线叫做角的边,它们的公共端点叫做角的顶点。

(7)余角:两角之和为90°则两角互为余角,等角的余角相等。

(8)补角:两角之和为180°则两角互为补角,等角的补角相等。

返回目录

如果本文的解答对您有所帮助,请在文章结尾处点击“顶一下”以表示您的支持。如果您对本文不满意,也请点击“踩一下”,以便我们改进该篇文章。