小伙伴,对于决策树法的步骤和运筹学中决策树的画法与决策树计算,很多人可能不是很了解。因此,今天我将和大家分享一些关于决策树法的步骤和运筹学中决策树的画法与决策树计算的知识,希望能够帮助大家更好地理解这个话题。
本文目录一览
决策树法的步骤
决策树法的几个关键步骤是:
1、画出决策树,画决策树的过程也就是对未来可能发生的各种事件进行周密思考、预测的过程,把这些情况用树状图表示出来.先画决策点,再找方案分枝和方案点.最后再画出概率分枝。
2、由专家估计法或用试验数据推算出概率值.并把概率写在概率分枝的位置上。
3、计算益损期望值,从树梢开始,由右向左的顺序进行.用期望值法计算.若决策目标是盈利时,比较各分枝,取期望值最大的分枝,其他分枝进行修剪。
扩展资料
决策树的优点
1、决策树易于理解和实现.人们在通过解释后都有能力去理解决策树所表达的意义。
2、对于决策树,数据的准备往往是简单或者是不必要的.其他的技术往往要求先把数据一般化,比如去掉多余的或者空白的属性。
3、能够同时处理数据型和常规型属性。其他的技术往往要求数据属性的单一。
4、在相对短的时间内能够对大型数据源做出可行且效果良好的结果。
5、对缺失值不敏感
6、可以处理不相关特征数据
7、效率高,决策树只需要一次构建,反复使用,每一次预测的最大计算次数不超过决策树的深度。
决策树的缺点
1、对连续性的字段比较难预测。
2、对有时间顺序的数据,需要很多预处理的工作。
3、当类别太多时,错误可能就会增加的比较快。
4、一般的算法分类的时候,只是根据一个字段来分类。
5、在处理特征关联性比较强的数据时表现得不是太好
运筹学中决策树的画法与决策树计算
决策树是由决策点、事件点及结果构成的树形图.使用方块表示决策点,使用圆圈表示事件点,由第一步方块引出几个决策,再根本每个决策分别可能产生的情况,画事件点,一直到最后,然后计算每一枝的最终收益.
管理学决策树怎么画
管理学决策树画法如下:
第一步:点击下载“亿图图示”软件,也可以访问亿图图示在线网页版。然后启动软件,开作图。
第二步:新建一个“决策树”。依次点击“管理-咨询”-“项目管理”-“决策树”。这样我们需要的决策树模板就会在下方,然后选择一个模板,点击使用。
第三步:首先打开画布左侧的符号库,可以看到很多专业的决策树符号,然后对想用的符号进行拖拽和使用,也可以修改模板的绘图形状打造个性化的决策树。
第四步:双击文本框,替换掉决策树模板中文字或者删除一些不需要的文本框
第五步:完成对决策树的绘制后,可以点击右侧上方的保存、下载、分析等按钮,对制作好的决策树进行存储。还可以将决策树导出为图片、PDF、PPT等多种格式。
决策树的常见用途:
绘制出一幅决策树的前提便是要有足够的数据来支撑计算,当有足够多的数据后,决策树便能根据数据进行整理和计算,决策树也可以对人们日常生活中的学习或者各种选择进行分析和预测。
1、企业的方案制定当企业在面临机遇或者危机时,急需找到正确的决策,那么便可以用决策树对自己目前的状况进行分析,选择出适合当前的决策,来将利益最大化。
2、计算机算法决策树可以说时计算机的比较基础的算法了。决策树既可以做分类算法也可以做回归算法,适合程序员学习联系计算机的代码书写。
决策树的画法
机器学习中,决策树是一个预测模型;他代表的是对象属性与对象值之间的一种映射关系。树中每个节点表示某个对象,而每个分叉路径则代表的某个可能的属性值,而每个叶结点则对应从根节点到该叶节点所经历的路径所表示的对象的值。决策树仅有单一输出,若欲有复数输出,可以建立独立的决策树以处理不同输出。数据挖掘中决策树是一种经常要用到的技术,可以用于分析数据,同样也可以用来作预测。
从数据产生决策树的机器学习技术叫做决策树学习,通俗说就是决策树。
一个决策树包含三种类型的节点:决策节点:通常用矩形框来表示机会节点:通常用圆圈来表示终结点:通常用三角形来表示
决策树学习也是资料探勘中一个普通的方法。在这里,每个决策树都表述了一种树型结构,它由它的分支来对该类型的对象依靠属性进行分类。每个决策树可以依靠对源数据库的分割进行数据测试。这个过程可以递归式的对树进行修剪。当不能再进行分割或一个单独的类可以被应用于某一分支时,递归过程就完成了。另外,随机森林分类器将许多决策树结合起来以提升分类的正确率。
决策树同时也可以依靠计算条件概率来构造。
决策树如果依靠数学的计算方法可以取得更加理想的效果。数据库已如下所示:
(x,y)=(x1,x2,x3…,xk,y)
相关的变量Y表示我们尝试去理解,分类或者更一般化的结果。其他的变量x1,x2,x3等则是帮助我们达到目的的变量。
决策树法分为那几个步骤
1、特征选择
特征选择决定了使用哪些特征来做判断。在训练数据集中,每个样本的属性可能有很多个,不同属性的作用有大有小。因而特征选择的作用就是筛选出跟分类结果相关性较高的特征,也就是分类能力较强的特征。在特征选择中通常使用的准则是:信息增益。
2、决策树生成
选择好特征后,就从根节点触发,对节点计算所有特征的信息增益,选择信息增益最大的特征作为节点特征,根据该特征的不同取值建立子节点;对每个子节点使用相同的方式生成新的子节点,直到信息增益很小或者没有特征可以选择为止。
3、决策树剪枝
剪枝的主要目的是对抗「过拟合」,通过主动去掉部分分支来降低过拟合的风险。
【简介】
决策树是一种解决分类问题的算法,决策树算法采用树形结构,使用层层推理来实现最终的分类。
决策树怎么画
决策树的画法:
入度为0的点称为树根,出度为0的点称为树叶,树叶以外的点称为内点。
1、绘制决策树图。从左到右的顺序画决策树,此过程本身就是对决策问题的再分析过程。
2、按从右到左的顺序计算各方案的期望值,并将结果写在相应方案节点上方。期望值的计算是从右到左沿着决策树的反方向进行计算的。
3、对比各方案的期望值的大小,进行剪枝优选。在舍去备选方案枝上,用不等号记号隔断。
结果结点:用三角结点△表示,将每个方案在各种自然状态下取得的收益值或损失值标注于结果节点的右端。
决策树分析方法的基本步骤
决策树分析方法的基本步骤
1.绘制决策树图。从左到右的顺序画决策树,此过程本身就是对决策问题的再分析过程。
2.按从右到左的顺序计算各方案的期望值,并将结果写在相应方案节点上方。期望值的计算是从右到左沿着决策树的反方向进行计算的。
3.对比各方案的期望值的大小,将期望值小的方案(即劣等方案)剪掉,所剩的最后方案为最佳方案。
决策树(简称DT)利用概率论的原理,并且利用一种树形图作为分析工具。其基本原理是用决策点代表决策问题,用方案分枝代表可供选择的方案,用概率分枝代表方案可能出现的各种结果,经过对各种方案在各种结果条件下损益值的计算比较,为决策者提供决策依据。
优点:
1)可以生成可以理解的规则;
2)计算量相对来说不是很大;
3)可以处理连续和种类字段;
4)决策树可以清晰的显示哪些字段比较重要。
缺点:
1)对连续性的字段比较难预测;
2)对有时间顺序的数据,需要很多预处理的工作;
3)当类别太多时,错误可能就会增加的比较快;
4)一般的算法分类的时候,只是根据一个字段来分类。
如果您对本文的解答感到满意,请在文章结尾处点击“顶一下”以表示您的肯定。如果您对本文不满意,也请点击“踩一下”,以便我们改进该篇文章。