亲爱的读者,对于充分必要条件初中数学和高中数学充分必要条件的判断技巧,很多人可能不是很了解。因此,今天我将和大家分享一些关于充分必要条件初中数学和高中数学充分必要条件的判断技巧的知识,希望能够帮助大家更好地理解这个话题。

本文目录一览

充分必要条件初中数学

充分必要条件是初中数学的重要概念,是透彻理解定理含义,深刻认识解题步骤的有力工具,在数学中有着广泛的应用。这些概念寓意深刻,较为抽象,常常成为教学中的难点。所以特意找出数学充分条件和必要条件知识点,方便记忆与学习
一、充分条件和必要条件
当命题“若A则B”为真时,A称为B的充分条件,B称为A的必要条件。
二、充分条件、必要条件的常用判断法
1.定义法:判断B是A的条件,实际上就是判断B=》A或者A=》B是否成立,只要把题目中所给的条件按逻辑关系画出箭头示意图,再利用定义判断即可
2.转换法:当所给命题的充要条件不易判断时,可对命题进行等价装换,例如改用其逆否命题进行判断。
3.集合法
在命题的条件和结论间的关系判断有困难时,可从集合的角度考虑,记条件p、q对应的集合分别为A、B,则:
若A⊆B,则p是q的充分条件。
若A⊇B,则p是q的必要条件。
若A=B,则p是q的充要条件。
若A⊈B,且B⊉A,则p是q的既不充分也不必要条件。
三、知识扩展
1.四种命题反映出命题之间的内在联系,要注意结合实际问题,理解其关系(尤其是两种等价关系)的产生过程,关于逆命题、否命题与逆否命题,也可以叙述为:
(1)交换命题的条件和结论,所得的新命题就是原来命题的逆命题;
(2)同时否定命题的条件和结论,所得的新命题就是原来的否命题;
(3)交换命题的条件和结论,并且同时否定,所得的新命题就是原命题的逆否命题。
2.由于“充分条件与必要条件”是四种命题的关系的深化,他们之间存在这密切的联系,故在判断命题的条件的充要性时,可考虑“正难则反”的原则,即在正面判断较难时,可转化为应用该命题的逆否命题进行判断。一个结论成立的充分条件可以不止一个,必要条件也可以不止一个。

返回目录

高中数学充分必要条件的判断技巧

高中数学充分必要条件的判断技巧如下:

技巧一:直接检验法

将满足条件(1)和(2)分别代入结论C中检验,根据检验结果来判别。也可以抽几个样本试算,代入检验法,是直接检验法中最简单的一种,还有样本检验法无法直接从条件出发代入,而是从满足条件的集合中抽取有代表性的样本,再代入题干检验。应该说明的是,样本检验属于不完全检验,不能严格证明,考生应作为辅助办法使用,或实在没辙了可以试一试。

技巧二:直接逻辑推理法

有时条件(1),(2)及结论C都是描述性的判断,实际上该类题属于纯逻辑题,可能会有点绕,但比起MBA联考正宗的逻辑题目来说,也是“小巫见大巫”了。因此考生在复习逻辑时要认真准备,因为数学部分的充分性判断题本身就非常需要考生加强在逻辑方面的知识和素养。

技巧三:化繁就简法

有时或者是条件(1)、(2),或者是结论G,可能表述或形式上比较复杂,不容易看清楚,这时候应该考虑用一些办法化繁就简,更易于比较和推理。事实上,化简以后,题目答案甚至一目了然了。

技巧四:直观画图法

有些题目涉及到集合的相互关系,涉及到空间关系,还有彼此之间循环的逻辑关系等,这类题通常都比较绕,光在脑子里想着想着就乱了,又得重来,实际上这类题的难度并不大,要养成在纸上画图的习惯,把逻辑关系、空间关系等各种纷繁复杂的关系画出来,就可清楚地找出规律来了。

技巧五:证伪排除法

数学上的证伪就是举反例。比如证明条件(1)充分需要数学上严格的证明,但如果我们能找出某个例子满足条件(1),但不满足结论,就可以说条件(1)充分是错误的,可以立刻把A和D排除掉。这样考生的选择范围大大缩小,进一步可以用其他方法从剩下的3个答案中选出正确答案,实在不行的话,从3个答案中猜一个,猜中的概率也大大增加了。

返回目录

高二数学课件充要条件

导语:充分必要条件也即充要条件,意思是说,如果能从命题p推出命题q,则也能从命题q推出命题p。下面是我给大家整理的高二数学课件充要条件的内容,希望能给你带来帮助!

高二数学课件充要条件

课题:充要条件

一、课标要求:

理解充分条件、必要条件与充要条件的意义,会判断充分条件、必要条件与充要条件.

二、知识与方法回顾:

1、充分条件、必要条件与充要条件的概念:

2、从逻辑推理关系上看充分不必要条件、必要不充分条件与充要条件:

3、从集合与集合之间关系上看充分条件、必要条件与充要条件:

4、特殊值法:判断充分条件与必要条件时,往往用特殊值法来否定结论

5、化归思想:

“”表示p等价于q,等价命题可以进行相互转化,当我们要证明p成立时,就可以转化为证明q成立;

这里要注意“原命题逆否命题”、“逆命题否命题”只是等价形式之一,对于条件或结论是不等式关系(否定式)的命题一般应用化归思想.

6、数形结合思想:

利用韦恩图(即集合的包含关系)来判断充分不必要条件,必要不充分条件,充要条件.

三、基础训练:

1、设命题“若p则q”为假,而“若q则p”为真,则p是q的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

2、设集合M,N为是全集U的两个子集,则是的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

3、若是实数,则“”是“”的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

四、例题讲解

例1已知实系数一元二次方程,下列结论中正确的是()

(1)是这个方程有实根的充分不必要条件

(2)是这个方程有实根的必要不充分条件

(3)是这个方程有实根的充要条件

(4)是这个方程有实根的充分不必要条件

A.(1)(3)B.(3)(4)C.(1)(3)(4)D.(2)(3)(4)

例2(1)已知h》0,a,b∈R,设命题甲:“”,命题乙:“且”,问甲是乙的()

(2)已知p:两条直线的斜率互为负倒数,q:两条直线互相垂直,则p是q的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

变式:a=0是直线与平行的条件;

例3如果命题p、q都是命题r的必要条件,命题s是命题r的充分条件,命题q是命题s

的充分条件,那么命题p是命题q的条件;命题s是命题q的条件;命题r是命题q的条件.

例4设命题p:4x-3≤1,命题q:x2-(2a+1)x+a(a+1)≤0,若?p是?q的必要不充分条件,求实数a的取值范围;

例5设是方程的两个实根,试分析是两实根均大于1的什么条件?并给予证明.

五、课堂练习

1、设命题p:“”,命题q:“”,则p是q的()

A.充分不必要条件B.必要不充分条件

C.充要条件D.既不充分也不必要条件

2、给出以下四个命题:①“若p则q”;②“若?r则?q”;③“若r则?s”;

④“若?s则q”;若它们都是真命题,则?p是s的条件;

3、是否存在实数p,使“”是“”的充分条件?若存在,求出p的取值范围;若不存在说明理由.

六、课堂小结:

七、后记:

返回目录

充分和必要条件的区别

充分和必要条件的区别

充分和必要条件的区别,充分条件和必要条件是同一命题的两个不同观点,充分条件和必要条件明确了命题中条件和结论的逻辑关系,一般人很容易混淆。以下分享充分和必要条件的区别。

充分和必要条件的区别1

充分条件和必要条件的区别是:

1、必要条件:如果能由结论推出条件,但由条件推不出结论,此条件为必要条件。

2、充分条件:由条件能推出结论,但由结论推不出这个条件,这个条件就是充分条件。

一、如果A能推出B,那么A就是B的充分条件。

二、如果没有A,则必然没有B;如果有A而未必有B,则A就是B的必要条件。数学上简单来说就是如果由结果B能推导出条件A,我们就说A是B的必要条件。

如果A是B的充分条件。那么属于A的一定属于B,而属于B的不一定属于A,具体的说若存在元素属于B的不属于A,则A为B的真子集;若属于B的也属于A,则A与B相等。

假设A是条件,B是结论

由A可以推出B,由B不可以推出A,则A是B的充分不必要条件

由A不可以推出B,由B可以推出A,则A是B的必要不充分条件

由A不可以推出B,由B不可以推出A,则A是B的不充分不必要条件

由A可以推出B,由B可以推出A,则A是B的充要条件(充分且必要条件)

充分和必要条件的.区别2

充分条件:

如果条件A是结论B的充分条件:A与其他条件是并连关系,即A、C、D…、中任意一个存在都可以使得B成立(就像是个人英雄主义),如下图:

用法:

1、如果条件A存在,B肯定成立,即A→B(箭头表示能够推导出)

2、如果B不成立,则说明所有可能的条件都不存在,因此A肯定也不存在,即非B→非A

3、如果条件A不存在,而条件C、D可能存在,也可以使得B成立,即不能导出非A→非B

必要条件:

条件A是结论B的必要条件:A与其他条件是串联关系,即条件A必须存在,且条件C、D…、也全部存在才可能导致B结论。(团结的力量)如下图:

用法:

我简单表示为A+…→B(中间的点表示还有其他条件)

1、如果B成立了,说明所有条件都存在,肯定存在条件A。即B→A。

2、如果条件A不存在,串联少了一个条件,B也肯定不能成立,即非A→非B。

3、如果B不成立,可能是C,D不存在但A存在,只是C、D掉链子了,即不能导出非B→非A。

试题中的用法:

先判断出各个关键词之间是充分还是必要关系,然后用关键词和箭头画出之间的关系,例如:A是B的充分条件,A’是B的必要条件,则画出来A→B←、、、、、+A’,然后根据必要条件A’+…→B能推导成B→A’的特点转化为A→B→A’

然后根据四个正确推论:A→B,非B→非A,B→A’,非A’→非B和

两个错误推论:非A→非B,非B→非A’即可进行判断。

对于公务员考试中此类题的简单解题方法,我在专栏里做了详细介绍,需要的话请移步专栏:充分必要条件-简单解题方法,如果完全理解消化了的`话,应该就能很顺利地解决这类题目了。

下面先举一个例子简单说明试题中的做法:

例题:只有住在广江市的人才能够不理睬通货膨胀的影响;如果住在广江市,就得要付税;每一个付税的人都要发牢骚。

根据上述判断,可以推出以下哪项一定是真的?

(1)每一个不理睬通货膨胀影响的人都要付税。

(2)不发牢骚的人中没有一个能够不理睬通货膨胀的影响。

(3)每一个发牢骚的人都能够不理睬通货膨胀的影响

充分和必要条件的区别3

一、充分条件与必要条件的两个特征

(1)对称性:若p是q的充分条件,则q是p的必要条件,即“pq”“qp”;

(2)传递性:若p是q的充分(必要)条件,q是r的充分(必要)条件,则p是r的充分(必要)条件。

注意区分“p是q的充分不必要条件”与“p的一个充分不必要条件是q”两者的不同,前者是“pq”而后者是“qp”。

二、充分条件与必要条件

1、一般地,“若p,则q”为真命题,是指由p通过推理可以得出q,这时,我们就说,由p可推出q,记作,并且说p是q的充分条件,q是p的必要条件;

2、充要条件:一般地,如果既有,又有,就记作,此时,我们说,p是q的充分必要条件,简称充要条件。

概括的说,如果,那么p与q互为充要条件。

3、充分不必要条件、必要不充分条件、既不充分也不必要条件:

①充分不必要条件:如果,且pq,则说p是q的充分不必要条件;

②必要不充分条件:如果pq,且,则说p是q的必要不充分条件;

③既不充分也不必要条件:如果pq,且pq,则说p是q的既不充分也不必要条件。

三、充要条件和必要条件的解题方法

1、从逆否命题,谈等价转换

由于互为逆否命题的两个命题具有相同的真假性,因而,当判断原命题的真假比较困难时,可转化为判断它的逆否命题的真假,这就是常说的“正难则反”。

2、在判断四个命题之间的关系时,首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系。要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应的有了它的“逆命题”“否命题”“逆否命题”;判定命题为真命题时要进行推理,判定命题为假命题时只需举出反例即可。对涉及数学概念的命题的判定要从概念本身入手。

3、充要条件的判断,重在“从定义出发”,利用命题“若p,则q”及其逆命题的真假进行区分,在具体解题中,要注意分清“谁是条件”“谁是结论”,如“A是B的什么条件”中,A是条件,B是结论,而“A的什么条件是B”中,A是结论,B是条件,有时还可以通过其逆否命题的真假加以区分。

返回目录

充分条件和必要条件,图中pq的四种关系,一定是在若p则q是真命题的前提下推出的吗

若P则Q为真的话,已经就是P→Q了啊,就代表P是Q的充分条件了。那些满足充分条件的,才会是“若P则Q为真”。

返回目录

充分条件、必要条件、充要条件、充分不必要条件和即充分有充要条件有什么区别的吗

充分条件,必要条件:
如果已知p-》q成立,那么p是q的充分条件,q是p的必要条件
充分条件:要使q成立,具备p就足够了,但无p,q未必不成立
因为p-》q与┐q则┐p互为逆否命题
简言之:有之必然,无之未必然
必要条件:q不具备,那么p就不成立;要使p成立必须具备q,但是具备q,p也未必成立。
简言之:有之未必然,无之必不然
充要条件
如果既有p-》q,又有q-》p
,就说p是q的充分必要条件,简称充要条件
充要条件:有p,q必成立;无p,q必不成立
简言之:有之必然,无之必不然
如果能从命题p推出命题q,条件q是条件p的必要条件
如果无甲必无乙,有甲则可能有乙也可能无乙,那么甲就是乙的必要条件。例如,不遵守逻辑规则必然写不出好文章;遵守逻辑规则,则可能写出好文章也可能写不出好文章。因此,遵守逻辑规则就是写出好文章的必要条件。
如果无A必无B,有A可能有B也可能没有B,则A是B的必要条件。
例如,没有电,电灯就不会亮。有电,电灯可能亮也可能不亮,所以,电是电灯亮的必要条件。
必要条件即必要不充分条件
充要条件
如果能从命题p推出命题q,也能从命题q推出命题p
条件p是条件q的充要条件,条件q是条件p的充要条件
以上是从逻辑推理关系说明
我们也可以从元素、集合的角度看
集合A=集合B
则A是B的充要条件

返回目录

p与q的逻辑关系图

P推出Q,但是如果假设A也能推出Q,那就不是非要P不可啊,所以P不是必要条件而P推出Q,则是因为P所以Q,所以Q是必要的,因为在这一组关系里,P不能推出其他,结果是必要的

返回目录

如果您对本文的解答感到满意,请在文章结尾处点击“顶一下”以表示您的肯定。如果您对本文不满意,也请点击“踩一下”,以便我们改进该篇文章。